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DEFINITIONS 

 

In the dissertation the following notations with the corresponding definitions are 

used. Here we present only the basic model-theoretic definitions [1, 2, 3, 4]. For 

convenience of narration more complex notions will be introduced later. 

A language or a signature 𝔏 (or Σ) consists of the following symbols: 

1) for every 𝑓𝑖 ∈ 𝔉 a set of functional symbols 𝔉 and corresponding positive 

integers 𝑛𝑓; 

2) for every 𝑅𝑗 ∈ ℜ a set of relational symbols ℜ and corresponding positive 

integers 𝑛𝑅; 

3) a set of symbols ℭ for the constants. 

An 𝔏-structure 𝔐 is given by the following: 

1) a universe (or a universal set) of the structure 𝔐, a non-empty set 𝑀; 

2) for every functional symbol 𝑓 ∈ 𝔉 a function 𝑓𝔐: 𝑀𝑛𝑓 → 𝑀; 

3) for every relation symbol 𝑅 ∈ ℜ a set 𝑅𝔐 ⊆ 𝑀𝑛𝑅; and 

4) for every constant symbol 𝑐 ∈ ℭ an element 𝑐𝔐 ∈ 𝑀 from the universe of the 

structure. 

The interpretations 𝑓𝔐 , 𝑅𝔐  and 𝑐𝔐 , when no ambiguity appears, will be 

denoted as the symbols 𝑓, 𝑅 and 𝑐 themselves. We will write an 𝔏-structure as 𝔐 =
〈𝑀; 𝑓𝔐, 𝑅𝔐, 𝑐𝔐〉𝑓∈𝔉,𝑅∈ℜ,𝑐∈ℭ, or, shorter as 〈𝑀; 𝑓, 𝑅, 𝑐〉𝑓∈𝔉,𝑅∈ℜ,𝑐∈ℭ or 〈𝑀; 𝔏〉. 

An 𝔏-substructure of an 𝔏-structure 𝔑, is an 𝔏-structure 𝔐, such that 𝑀 ⊆ 𝑁 

and the next conditions hold: 

1) for all constant symbols 𝑐 ∈ 𝔏, 𝑐𝔐 = 𝑐𝔑; 

2) for all 𝑛-ary function symbols 𝑓 ∈ 𝔏, for all 𝑎̅ ∈ 𝑀𝑛, 𝑓𝔐(𝑎̅) = 𝑓𝔑(𝑎̅) ∈ 𝑀; 

3) for all 𝑛-ary relational symbols 𝑅 ∈ 𝔏, 𝑅𝔐 = 𝑅𝔑 ∩ 𝑀𝑛. 

A homomorphism from a structure 𝔐 to a structure 𝔑 is a mapping ℎ: 𝑀 → 𝑁 

that satisfies the next conditions: 

1) for every constant symbol 𝑐 ∈ 𝔏 of the signature, ℎ(𝑐𝔐) = 𝑐𝔑; 

2) for every 𝑛-ary function symbol 𝑓 ∈ 𝔏 and for every 𝑎̅ ∈ 𝑀𝑛, ℎ(𝑓𝔐(𝑎̅)) =
𝑓𝔑(ℎ(𝑎̅)); and 

3) for every n-ary relational symbol 𝑅 ∈ 𝔏 of the signature, and every tuple 𝑎̅ ∈
𝑀𝑛, if 𝑎̅ ∈ 𝑅𝔐, then ℎ(𝑎̅) ∈ 𝑅𝔑 

An embedding is a homomorphism ℎ: 𝔐 → 𝔑  for which for any 𝑛 -ary 

relational symbol 𝑅 of 𝔏 and for every tuple 𝑎̅ ∈ 𝑀𝑛 with 𝑎̅ ∈ 𝑀𝑛, 𝑎̅ ∈ 𝑅𝔑 if and 

only if 𝑎̅ ∈ 𝑅𝔐. 

An isomorphism is a surjective embedding between two structures 𝔐 and 𝔑. 

An automorphism is an isomorphism from the structure 𝔐 onto itself. 

Isomorphic structures are structures 𝔐  and 𝔑 , such that there exists an 

isomorphism function from 𝔐 to 𝔑. It is denoted as 𝔐 ≅ 𝔑. 

A term of a language 𝔏 can be defined inductively by the next rules: 

1) each variable is a term; 

2) each constant symbol of the language 𝔏 is a term as well; 
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3) given 𝑓 ∈ 𝔏 to be an 𝑛-ary function symbol and 𝑡1, 𝑡1, . . . , 𝑡𝑛  to be terms, 

𝑓(𝑡1, 𝑡1, . . . , 𝑡𝑛) is also a term. 

An atomic formula of the language 𝔏  is an expression of the form 

𝑅(𝑡1, 𝑡1, . . . , 𝑡𝑛) , where 𝑅  is an 𝑛 -ary relational symbol of the language 𝔏 , and 

𝑡1, 𝑡1, . . . , 𝑡𝑛 are terms of 𝔏.  

A tuple 𝑎̅ = 〈𝑎1, . . . , 𝑎𝑘〉 ∈ 𝑀𝑘 satisfies  the atomic formula 𝜑(𝑥1, . . . , 𝑥𝑘) if in 

the structure 𝔐 if the following holds: 𝑅𝔐(𝑡1(𝑎̅), . . . , 𝑡𝑘(𝑎̅)). Satisfaction is denoted 

in the following way: 𝔐 ⊨ 𝜑(𝑎1, . . . , 𝑎𝑛). In the case when the tuple 𝑎̅  does not 

satisfy the formula 𝜑 in 𝔐, we denote it as 𝔐 ⊨ 𝜑(𝑎1, . . . , 𝑎𝑛). 

A formula and satisfaction of a formula in an 𝔏-structure 𝔐 are given by the 

next rules: 

1) each atomic formula is a formula; 

2) given a formula 𝜑(𝑥1, . . . , 𝑥𝑛), the statement ¬𝜑(𝑥1, . . . , 𝑥𝑛) is a formula. For 

𝑎̅ ∈ 𝑀𝑛, its negation is satisfiable (𝔐 ⊨ ¬𝜑(𝑎̅)) if and only if 𝔐 ⊨ 𝜑(𝑎̅). 

3) if 𝜑1(𝑥1, . . . , 𝑥𝑛) and 𝜑2(𝑥1, . . . , 𝑥𝑛) are formulas, then the statements (𝜑1 ∧
𝜑2)(𝑥1, . . . , 𝑥𝑛)  and (𝜑1 ∨ 𝜑2)(𝑥1, . . . , 𝑥𝑛)  are formulas as well. Given 𝑎̅ ∈ 𝑀𝑛 , 

𝔐 ⊨ (𝜑1 ∧ 𝜑2)(𝑎̅) if and only if both 𝔐 ⊨ 𝜑1(𝑎̅) and 𝔐 ⊨ 𝜑2(𝑎̅) hold; and 𝔐 ⊨
(𝜑1 ∨ 𝜑2)(𝑎̅) if and only if 𝔐 ⊨ 𝜑1(𝑎̅) or 𝔐 ⊨ 𝜑2(𝑎̅). 

4) if 𝜑(𝑥1, . . . , 𝑥𝑛) is a formula, then (∃𝑥𝑖𝜑(𝑥1, . . . , 𝑥𝑛) and ∀𝑥𝑖𝜑(𝑥1, . . . , 𝑥𝑛), 

for 1 ≤ 𝑖 ≤ 𝑛  are also formulas. If 〈𝑎1, . . . , 𝑎𝑛−1〉 ∈ 𝑀𝑛−1 , then the formula ∃𝑥𝑛 

𝜑(𝑎1, . . . , 𝑎𝑛−1, 𝑥𝑛) is satisfied in the structure 𝔐 if and only if there is 𝑎𝑛 ∈ 𝑀 for 

which 𝔐 ⊨ 𝜑(𝑎1, . . . , 𝑎𝑛−1, 𝑎𝑛); and 𝔐 ⊨ ∀𝑥𝑛𝜑(𝑎1, . . . , 𝑎𝑛−1, 𝑥𝑛) if and only if for 

each 𝑎𝑛 ∈ 𝑀 we have 𝔐 ⊨ 𝜑(𝑎1, . . . , 𝑎𝑛−1, 𝑎𝑛). 

A sentence is a formula which has no free variables, that is, every variable 

occurring in it is in a scope of an existential of universal quantifier. 

A definable subset of an 𝔏-structure 𝔐 is such a subset 𝐷 of the set 𝑀𝑛, that 

there is an element 𝑏 ∈ 𝑀𝑚 and a formula 𝜑(𝑥1, 𝑥2, . . . , 𝑥𝑛+𝑚) with 

  

𝐷 = {(𝑎1, . . . , 𝑎𝑛) ∈ 𝑀𝑛 | 𝔐 ⊨ 𝜑(𝑎1, . . . , 𝑎𝑛, 𝑏1, . . . , 𝑏𝑛)}. 

  

An elementary substructure of a structure 𝔑 is a structure 𝔐 (equivalently, 𝔑 

is called an elementary extension of the structure 𝔐), denoted as 𝔐 ≺ 𝔑, if for every 

𝑛-formula 𝜑(𝑥̅) of the language and for all elements 𝑎̅ ∈ 𝑀𝑛 , we have that 𝔐 ⊨
𝜑(𝑎̅) if and only if 𝔑 ⊨ 𝜑(𝑎̅). 

An elementary embedding from a structure 𝔐 to a structure 𝔑 is a map 𝑓 

from the universal set 𝑀 to the universal set 𝑁, such that every formula 𝜑(𝑥1, . . . , 𝑥𝑛) 

of the language and every 𝑎̅ ∈ 𝑀𝑛, we have 𝔐 ⊨ 𝜑(𝑎1, . . . , 𝑎𝑛) if and only if 𝔑 ⊨
𝜑(𝑓(𝑎1), . . . , 𝑓(𝑎𝑛)). 

Elementary equivalent structures 𝔐 ≡ 𝔑  are 𝔏 -structures 𝔐  and 𝔑  such 

that, for every 𝔏-sentence 𝜎, 𝔐 ⊨ 𝜎 if and only if 𝔑 ⊨ 𝜎. Elementary equivalence 

of models of 𝔏 is equivalent to having the same theory. 

An 𝔏-theory is a set of 𝔏-sentences. 

A complete theory is an 𝔏-theory 𝑇 such that for every sentence 𝜎 of 𝔏 either 
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𝜎 ∈ 𝑇 or ¬𝜎 ∈ 𝑇. 

A countable theory is a theory which has only a countable number of sentences. 

A model 𝔐  of a theory 𝑇  is a structure 𝔐  such that 𝔐 ⊨ 𝜑  holds for all 

sentences 𝜑 ∈ 𝑇. 

A satisfiable theory is a theory which has a model. 

A sentence 𝜑 follows from the theory 𝑇 if it holds in all models of 𝑇, 𝑇 ⊢ 𝜑. 

A consistent theory is a theory 𝑇 such that for every formula 𝜑 of the given 

language, 𝑇 ⊢ (𝜑 ∧ ¬𝜑). 

An inconsistent theory is a theory which is not consistent. 
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NOTATIONS AND ABBREVIATIONS 

   

𝔏, Σ, ... languages 

𝔐, 𝔑, ... structures 

𝑀, 𝑁, ...  universes of structures 

𝑎, 𝑏, ...  elements of structures 

𝛼, 𝛽, ...  (usually) elements of extensions of structures 

𝑎̅, 𝑏̅, ...  tuples 

𝑝(𝑥̅), 𝑞(𝑦̅), ... types 

𝜑(𝑥̅), 𝜓(𝑦̅), ... formulas 

¬ negation 

∀,∃ existential and universal quantifiers 

∨, ∧ disjunction and conjunction 

→, ↔ implication and biconditional 

⇔ if and only if 

𝑎 ∈ 𝐴 𝑎 is an element of the set 𝐴 

𝑎 ∈ 𝐴  𝑎 is not an element of the set 𝐴 

⊆ subset (substructure) relation 

⊂ subset (substructure) but not equal 

∪, ∩, \ union, intersection, relative complement of sets 

𝐴 > 𝐵  all elements of set 𝐴 are greater than elements of 𝐵 

|𝐴| cardinality of a set 𝐴 

𝜑(𝑀) (𝑝(𝑀)) set of realizations  

𝑉𝑝, 𝑄𝑉𝑝 neighbourhood, quasi-neighbourhood 

⊨, ⊨ satisfaction in structure 

⊢ entails 

≅ isomorphism of structures 

≡ elementary equivalence 

≺ elementary substructure 

𝑇ℎ(𝔐) theory of structure 𝔐 

𝑀𝑜𝑑(𝑇) class of all models of theory 𝑇 

𝐼(𝑇, 𝜆) number of models of cardinality 𝜆 of 𝑇 

𝑆𝑛(𝑇) (𝑆𝑛(𝐴)) set of all complete 𝑛-types (over set 𝐴) of theory 𝑇 

𝑡𝑝(𝑎/𝐴) type of 𝑎 over the set 𝐴 

⊥𝑎  relation of almost orthogonality of types 

⊥𝑤  relation of weak orthogonality of types 

𝒟(𝔐) finite diagram (dowry) 

𝜑𝑐 (𝑝𝑐) convex closure of a formula (type) 

𝑎𝑐𝑙(𝐴) (𝑑𝑐𝑙(𝐴)) algebraic (definable) closure of a set 
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INTRODUCTION 

 

Actuality of the research theme. At the present time, one of the main tasks of 

model theory is solving the spectral problem, that is, description for the different 

classes of theories of the function 𝐼(𝑇, 𝜆), the function determining the number of non-

isomorphic models of a theory 𝑇 of cardinality 𝜆. One of the insufficiently explored 

problems is the problem of the description of the number 𝐼(𝑇, 𝜔) of countable non-

isomorphic models of the theory 𝑇. 

Related with this issue is the Vaught’s conjecture, or the Vaught’s hypothesis, 

according to which there is no countable theory for which the number of countable 

models up to an isomorphism is larger than the cardinality of natural numbers and less 

than the cardinality of real numbers, that is, there exist no theory satisfying the 

condition 𝜔 < 𝐼(𝑇, 𝜔) < 2𝜔. 

Morley proved [5] that if 𝐼(𝑇, 𝜔) is infinite then it must be 𝜔 or 2𝜔  or the 

cardinality of between 𝜔 and the cardinality of continuum. That is, 𝐼(𝑇, 𝜔) ∈ 𝜔 ∪
{𝜔, 𝜔1, 2𝜔}. Vaught proved [6] that the number of countable nonisomorphic models 

can not be equal to 2. 

A theory is called to be small if the number of all its 𝑛-types is no more than 

countable for any finite 𝑛. In the case when a theory is not small it has the maximal 

number of countable models, that is equal 2𝜔. 

J. Baldwin and A. Lachlan confirmed the Vaught conjecture for the class of 

uncountably categorical theories [7]. MacKay, Harrington and Shelah in the work [8] 

confirmed the Vaught conjecture for the class of all omega-stable theories. By using of 

a theory of orthogonality of 1-types in ordered minimal theories of D. Marker [9], L. 

Mayer proved the Vaught conjecture for the class of ordered minimal theories [10]. 

The Vaught conjecture for the class of quite o-minimal theories was confirmed by S.V. 

Sudoplatov and B.Sh. Kulpeshov [11]. 

Although the Vaught hypothesis has been proved for various individual classes of 

theories, in general case the task of counting the number of countable nonisomorphic 

models is still not solved. One of the classes for which the Vaught conjecture has not 

been proven yet is the class of dependent theories. Exactly this class is under 

investigation of this research. 

The description of conditions under which complete theories have the maximal, 

that is 2ℵ0, number of countable non-isomorphic models, is an important question in 

studying the countable spectrum of those theories. For instance, at first, L. Mayer found 

sufficient conditions for an o-minimal theory to have the maximal number of countable 

non-isomorphic model; and only after that she moved to proving the Vaught conjecture 

for o-minimal theories [10, P. 157]. Another example is the work [11, P. 129] by S. 

Sudoplatov and B.Sh. Kulpeshov, in which the authors indicated the conditions of 

maximality of countable spectrum, and proved the Vaught conjecture for quite o-

minimal theories. In this connection, most of the work will be devoted to finding 

conditions under which a given theory has the maximal number of countable models 

up to an isomorphism. 

The aims and objectives of the study. The work is devoted to studying countable 



9 

 

spectrum of theories which have a countable number of types. The aims of the work 

are the following: 

1) To find conditions of maximality of a number of countable models. 

2) To find a class of dependent theories for which the Vaught conjecture can be 

solved. 

The main provisions for the defense of the dissertation: 
1) Given a countable complete theory of (an expansion of) a linear order. If there 

exists a finite subset of some model of this theory and a non-principal extremely trivial 

1-type over this subset, then the given theory has the maximal number, that is 2𝜔, of 

countable non-isomorphic models. 

2) If there exists a formula which determines a partial order on tuples of elements 

such that for every given natural number there exists a finite discrete chain whose 

length is greater or equal to the number, then the given countable theory has the 

maximal number of countable models up to an isomorphism. 

3) If in a countable complete theory of (an expansion of) a linear order there exists 

a formula quasi-successor on some non-principal 1-type. Then this theory has 2𝜔 

countable non-isomorphic models. 

4) The subclass of the class of dependent theories – the class of weakly o-minimal 

theories of convexity rank 1 satisfies the Vaught conjecture. 

The objects of research are small dependent theories. 

The research subjects are countable models of small dependent theories and their 

number up to an isomorphism. 

Research methods include analysis of theories through the use of properties of 

types. Neighbourhoods in a realization of a type are considered, that is how formulas 

behave inside the realization set of a given type (for example in [12]), as well as 

relations of orthogonality between few types are considered: the weak and almost 

orthogonality between types give an opportunity to understand in which way 

realizations of these types in models are connected [13]. For example, realization of 

one type in a model can imply realization of one or more types in the same model, or 

all realizations of few types can be independent from each other, allowing all possible 

combinations of realizing-omitting these types in models of the theory. Also, while 

constructing models, a method based on the Tarski-Vaught test (criterion) is used. This 

criterion guarantees for a subset of a model that it would be a model of the given theory 

(and moreover, it would be an elementary submodel of this model). 

Novelty of the dissertation research. Problem of description of a countable 

spectrum of small dependent theories is open at the present time. Classes of theories 

under the study have not been investigated on a number of countable models. 

Theoretical and practical significance of the research. Researches in this area 

constitute steps in solving the Vaught conjecture. Expected results on the nature of 

countable models of small dependent theories can be applied to group, ring and field 

theory. 

Connection of the dissertation thesis with the other scientific research works. 
The dissertation thesis was implemented within the scientific projects of the program 

of grant financing of fundamental researches in the area of natural sciences of the 
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Ministry of education and science of the Republic of Kazakhstan “Properties of types 

in dependent theories” (2015-2017 years, 5125/GF4) and “Conservative extensions, 

countable ordered models and closure operators” (2018-2020 years, AP05134992). 

The work approbation. Results of the work were presented and discussed at the 

following conferences [14-23] and seminars: Logic Colloquium 2015, University Of 

Helsinki, Finland, 2015; “Function theory, informatics, differential equations and their 

applications”, Almaty, 2015; “Algebra, analysis, differential equations and their 

applications”, Almaty, 2016; Logic Colloquium 2016, Leeds, United Kingdom, 2016; 

Annual April scientific conference of the Institute of Mathematics and Mathematical 

Modeling, Almaty, 2017; International Summer School-Conference “Problems Allied 

to Universal Algebra and Model Theory”, Erlagol-2017, Novosibirsk, Russia, 2017; 

“Actual problems of pure and applied mathematics”, Almaty, 2017; Scientific seminars 

of the department of algebra and mathematical logic of the Institute of Mathematics 

and mathematical modeling; Results of this dissertation were discussed with model 

theory specialists during the scientific training in University of Illinois at Chicago and 

were presented at Louise Hay Logic Seminar in November 2017. 

Publications. Based on results of the dissertation 15 works were published: 5 

journal articles (2 in Scopus indexed Journals and 3 in journals recommended by the 

Committee for Control in Education and Science of the Ministry of Education and 

Science of the Republic of Kazakhstan), and 10 in proceedings of international 

scientific conferences. 

Volume and structure of the dissertation. The work includes the title page, 

contents, normative references, definitions, notations and abbreviations, introduction, 

8 sections, conclusion and references. Total volume of the dissertation is 79 pages, the 

work contains 1 illustration and 79 literature references. 

Main content of the dissertation. The introduction includes actuality of the 

research theme, aims and objectives, the main provisions for the defense of the 

dissertation, the research object and subject, methods, novelty and theoretical and 

practical significance of the research, connection of the dissertation thesis with the 

other scientific research works, the work approbation, author’s publications, and 

volume, structure and content of the dissertation thesis. 

The first section explains the current state of the investigated area of model theory. 

The second section gives preliminary information and explains basic tools which 

will be used throughout the dissertation. 

The 3rd section considers dowries (in other words, finite diagrams), meaning, sets 

of types realized in a given model; and, under the given assumption considers the case 

of a counterexample of Vaught conjecture. 

In the fourth section the notions of weak and almost orthogonality are introduced, 

some useful properties of types, as well as few theorems connecting orthogonality with 

the number of countable models are proven. 

The 5th section is focused on finding conditions that imply small theories of linear 

order have the maximum number of countable non-isomorphic models. We introduce 

different notions of triviality of non-principal types, give examples and prove that a 

theory of order, which has an extremely trivial type, has 2ℵ0 countable models. 
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In Section 6 countable small theories, which have definable partial order on 

tuples, are studied, and a theorem on a sufficient condition on such theories to have the 

maximal number of countable models of is proved. 

Section 7 uses approach from the Chapter 6 in order to prove that a theory of a 

definable linear order which has a so-called formula-quasi-successor has the maximal 

number of countable non-isomorphic models. 

In Section 8 we consider a subclass of dependent theories, namely, the class of 

weakly o-minimal theories of convexity rank 1. We prove binarity of such theories and 

show that they satisfy the Vaught conjecture, that is we prove that every weakly o-

minimal theory of convexity rank 1 is either countably categorical, Ehrenfeucht, has 

𝜔, or 2𝜔 countable models. 

The conclusion lists and generalizes the main results obtained during 

implementation of the dissertation thesis. 
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1 HISTORICAL OVERVIEW 

 

Two models of a given language are said to be isomorphic if there exists a 

bijective function between universes of those models, which preserves basic relations 

from one structure into the other. It is obvious that in case when two models are 

isomorphic, then the cardinalities of their universes are equal. 

A. Los in [24] conjectured that if a complete theory is categorical in some 

uncountable cardinality, then it is categorical in all other uncountable cardinalities as 

well. In 1965 M. Morley [25] confirmed the Los’s hypothesis proved homogeneity of 

all models of categorical theories, while changing the quality of research in model 

theory, systematically introducing methods of working with types (locally consistent 

sets of formulas), through introducing ranks of the types and formulas based on study 

of category of topological spaces of 𝑛-types and elementary embeddings. This article, 

as well as Baldwin-Lachlan’s article [7, P. 79], played an important role in 

development of model theory throughout the next two decades. M. Morley formulated 

a list of unsolved problems on uncountably categorical theories, which included, 

besides the above-mentioned question on finite axiomatizability, the question of 

finiteness of a Morley rank, a question that suggests that the number of countable non-

isomorphic models may not be finite. J.T. Baldwin [26] and independently, B.I. Zilber 

[27], proved finiteness of Morley rank for uncountably categorical theories. T.G. 

Mustafin and A.D. Taimanov, setting a condition on the Morley tower (that is, an 

increasing chain of elementary embedded models) given, proved non-finiteness of the 

number of countable models [28]. The final solution of the problem of Morley about 

the number of countable models was given in the work by J.T. Baldwin and A. Lachlan 

[7, P. 79], in which authors proved that an uncountably categorical theory can be either 

1 or countable number of countable models. In addition, they reproved M. Morley’s 

theorem, meanwhile establishing that every model of such a theory is characterized by 

a dimension of a strongly minimal formula. This work defined the nature of researches 

in model theory, in particular for questions related with counting the number of 

countable non-isomorphic models, the idea of the dimension began to play a decisive 

role. 

A spectrum of a complete theory is a function that assigns to cardinal 𝜆 the 

number of non-isomorphic models of the given theory of cardinality 𝜆, 𝐼(𝑇, 𝜆). 

Main problem. To prove that for every complete theory the spectrum 

function is non-decreasing for uncountable cardinals. 
Saharon Shelah in a series of papers [29-32] proved that for a class of non-stable 

theories, and stable but theories which are not non-superstable, such a function takes 

the maximum value on uncountable cardinals. While doing so, he developed the 

stability theory, now it had become classics in model theory [33]. In addition, it became 

clear that for the class of totally transcendental theories and the class of superstable but 

not totally transcendental theories the spectrum functions will be different, and it is 

necessary to conduct the research of properties of models of these theories by means 

of rank functions. 

Spectrum and rank functions. 
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Totally transcendental theories. 

A theory is called totally transcendental if every its type has Morley rank. Every 

countable 𝜔1-categorical theory is a totally transcendental theory, the class of totally 

transcendental theories coincides with the class of 𝜔-stable theories. S. Shelah showed 

that for every cardinality 𝜆 ≥ 𝜔  there is a saturated model for a given totally 

transcendental theory. For a totally transcendental theory any two prime over some set 

models are isomorphic over this set [30, P. 107]. Totally transcendental theories of a 

rank were investigated by A. Lachlan. He gave a complete description of all possible 

spectrum functions of rank 2 and degree 1 [34]. B.S. Baizhanov extended the full 

description of spectrum functions for an arbitrary degree 𝑛 and rank 2 [35], meanwhile 

he specified the list of spectrum functions for the degree 1. In year 1978 A. Lachlan 

introduced an important result in the study of spectral functions, proving that in class 

of totally transcendental theories, there is no constant functions except for uncountably 

categorical, and the most important, that every function is non-decreasing. 

Theorem [36]. If 𝑇 is a totally transcendental theory, then for the spectrum 𝑆𝑇 

one of the following possibilities holds: 

1) 𝑆𝑇(𝜔𝛼) = 1 for every ordinal 𝛼 ≥ 1 and 𝑆𝑇(𝜔) ∈ {1, 𝜔}; 

2) 𝑆𝑇(𝜔𝛼) = |𝛼| for 𝛼 ≥ 𝜔 for all ordinals 𝛼 and 𝑆𝑇(𝜔𝛼) = |𝛼 + 1|𝜔; 

3) 𝑆𝑇(𝜔𝛼) = |𝛼 + 1|𝜔 for every 𝛼 ≥ 1; and 

4) 𝑆𝑇(𝜔𝛼) ≥ 𝜔|𝛼| for every ordinal 𝛼. 

The case 4) in this classification has great uncertainty. Lachlan hypothesized that 

in this case spectrums of totally transcendental theory are limited to the following 

range: 

a) 𝑆𝑇(𝜔𝛼) = 𝜔|𝛼| , 𝛼 ≥ 1; 

b) 𝑆𝑇(𝜔𝛼) = 2𝜔𝛼, 𝛼 ≥ 1; 

c) 𝑆𝑇(𝜔𝛼) = 𝑚𝑎𝑥(2𝜔, 𝜔|𝛼|), 𝛼 ≥ 1. 

B. Baizhanov [37] extended this list, he constructed for every ordinal 𝛾 < 𝜔1 

totally transcendental theories which have the following spectrums: 

d) 𝑆𝑇(𝜔𝛼) = 𝑚𝑖𝑛(2𝜔𝛼 , 𝛽(|𝛼 + 1|, 𝛾)) , 𝛼 ≥ 1  (where the cardinal 𝛽(𝜒, 𝛼)  is 

defined by induction and is the standard definition in axiomatic set theory);  

e) 𝑆𝑇(𝜔𝛼) = 𝑚𝑖𝑛(2𝜔,𝛼 , 𝛽(|𝛼 + 1|𝜔, 𝛾)), 𝛼 ≥ 1. 

About this B.S. Baizhanov’s extension it was told in the review article by E.A. 

Palyutin [38]. A. Lachlan [34, P. 153] and B.S. Baizhanov [39] identified a condition 

that provides maximality of the number of countable models in all uncountable 

cardinalities (Lachlan for rank 2, by Baizhanov it was generalized to the class of 

omega-stable theories), based on dimensions of types associated with various copies 

of one formula, defined by different constants, connected by a non-trivial relation in 

the realization of a type (connected type). In the next decade the results of A. Lachlan 

and B.S. Baizhanov were strengthened, absorbed and blocked by numerous at that time 

works dedicated to spectrum of superstable and omega-stable theories. For omega-

stable theories, the condition of existence of a connected type, magically re-opened in 

other terms (later named by Shelah, the dimensional order property, dop), together with 

the condition of an infinite depth constituted a necessary and sufficient condition for 

the spectrum of omega-stable theories to be maximal. 
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Spectrum of superstable theories. 

Finally, the spectrum problem was solved by Shelah in the second half of the 80’s 

for the class superstable theories, and hence for the class of all complete countable 

theories [40], and Hart-Hrushovski-Laskowski carefully considered all non-obvious 

places in the proof of Shelah, closing all gaps in the proof [41]. Note that the list of 

spectral functions for superstable theories is different from the list for omega-stable 

theories with adding e’), where instead of 𝜔 in the exponent in the definition of beta 

function e) 2𝜔 is used. 

Number of countable models. 
The Lachlan problem. After A. Lachlan proved that every superstable theory 

can not have a finite number of non-isomorphic models except 1 [42], he formulated 

the problem that existence of a stable theory which has a finite number of models up 

to an isomorphism. T.G. Mustafin proved that given a stable theory which has a non-

principal superstable type, the countable spectrum of such a theory can not be finite 

[43]. S.V. Sudoplatov constructed a stable theory that has a finite number of countable 

models up to an isomorphism [44]. 

 The Vaught Conjecture. The conjecture states that the number of countable 

non-isomorphic models of a countable theory can be either finite, countable, have 

cardinality of a continuum, or have an intermediate cardinality between a countable set 

and the continuum (𝐼(𝑇, 𝜔) ∈ 𝜔 ∪ {𝜔, 𝜔1, 2𝜔}). Vaught proved [6, P. 320], that this 

number can not be equal to 2. As it was said earlier, a small theory is the theory, number 

of 𝑛-types of which is not maximal for every finite 𝑛. If a theory is not small, the 

number of its countable models is maximal, that is, 2𝜔 . As mentioned above, J.T. 

Baldwin and A. Lachlan confirmed the Vaught conjecture for the class of uncountably 

categorical theories [7, P. 70]. For the class of omega-stable theories the conjecture 

was confirmed by S. Shelah, L. Harrington and M. Makkai in [8, P. 259]. Laura Mayer, 

using D. Marker’s theory of orthogonality of 1-types in o-minimal theories [9, P. 63], 

confirmed the Vaught conjecture for the class of o-minimal theories [10, P. 157]. The 

Vaught conjecture for quite o-minimal theories was proved by S.V. Sudoplatov and 

B.Sh. Kulpeshov [11, P. 131]. 

The question about the number of countable models is described in the works of 

many scientists. The other works on this subject that are referenced by many authors 

are written by S. Shelah [45], A. Pillay [46] and M. Benda [47]. One more work is the 

article [48] of S.V. Sudoplatov and R.A Popkov, which classifies the theories which 

have the continuum number of types (and therefore the maximal number of models) 

according to different criteria. In his work [49] Enrique Casanovas studied the number 

of countable models from the different sides of view: semi-isolation, Rudin-Keisler 

order, smooth classes and closures, predimensions, dimension and stability. In the work 

[50] B.S. Baizhanov and B. Omarov considered the number of countable 

nonisomorphic models from the aspect of the notion of finite diagrams. At the present 

time there is no answer on the Vaught conjecture but model theory specialists continue 

to work on it, in particular S.V. Sudoplatov [51] jointly with B.S. Baizhanov and V.V. 

Verbovskiy [52]. 

The number of countable models of theories with an ∅-definable relation of a 
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linear order had been studied in the works [10, P. 146; 11, P. 129; 53-57] and others. 

The question on the countable spectrum of theories which have a linear and a partial 

order has a big place in the dissertation, since it is of a big importance in studying the 

class of dependent, non-stable theories. 
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2 PRELIMINARY INFORMATION 

 

In this section we introduce basic concepts of model theory as well as the main 

tools used in this branch of mathematical logic. 

  

2.1 Theories. Basic tools: Tarski-Vaught test, Compactness, Theorem of 

Existence of a Model, Omitting types 

 

Given an 𝔏-structure 𝔐 we denote 𝑇ℎ(𝔐) = {𝜑 ∈ 𝔏 | 𝔐 ⊨ 𝜑}. 

 

Theorem 2.1.1 [3, P. 15] Let 𝑇 be a consistent theory. Then the next points are 

equivalent: 

a) The theory 𝑇 is complete; 

b) All models of 𝑇 are elementary equivalent; 

c) There exists a structure 𝔐 with 𝑇ℎ(𝔐) = 𝑇.  

 

Note that if structures are elementary equivalent, then they have the same theory, 

and the other way, if the structures are of the same theory, then they are elementary 

equivalent. By 𝑀𝑜𝑑(𝑇) we denote the class of all the models of theory 𝑇. 

 

Definition 2.1.1 [1, P. 34] An 𝔏-theory 𝑇 is called inconsistent, if 𝑇 ⊢ (𝜑 ∧
¬𝜑) for some formula 𝜑. Otherwise the theory it is consistent. 

 

Theorem 2.1.2 [1, P. 34] (Gödel’s Completeness Theorem) Let 𝑇  be an 𝔏-

theory, 𝜑 be a sentence of the language 𝔏. Then 𝑇 ⊨ 𝜑 if and only if 𝑇 ⊢ 𝜑.  

 

Corollary 2.1.1 [1, P. 34] A theory 𝑇 is a consistent theory if and only if it is 

satisfiable.  

 

An 𝔏-theory 𝑇 has the witness property if given an 1-𝔏-formula 𝜑(𝑣), there is 

a constant 𝑐 ∈ 𝔏 such that 𝑇 ⊨ (∃𝑣  𝜑(𝑣) → 𝜑(𝑐)). The theory 𝑇  is said to be a 

maximal theory if for every sentence 𝜑  either 𝜑  belongs to the theory 𝑇, or its 

negation [1, P. 34]. 

 

Theorem 2.1.3 [1, P. 34](Malcev’s Compactness Theorem) A theory 𝑇  is a 

satisfiable theory if and only if every its finite subset is satisfiable. 

 

Here are listed some base properties of satisfiable theories. 

 

Lemma 2.1.1 [1, P. 35] Let we are given is a finitely satisfiable maximal 𝔏-theory 

𝑇. Then if 𝛥 ⊆ 𝑇 is a finite subset and 𝛥 ⊨ 𝜓, then 𝜓 ∈ 𝑇. 

 

Lemma 2.1.2 [1, P. 35] Let we are given is a finitely satisfiable maximal 𝔏-theory 

𝑇 which has the witness property. Then the theory 𝑇 has a model. More precisely, if 
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𝑘 is a cardinal and there are no more than 𝑘 constant symbols in the language 𝔏, 

then there is a model 𝔐 ⊨ 𝑇 such that |𝔐| ≤ 𝑘. 

 

Lemma 2.1.3 [1, P. 38] Let 𝑇 be a finitely satisfiable theory of a language 𝔏, 

and 𝜑 to be an 𝔏-sentence, then either the theory 𝑇 ∪ 𝜑 or the theory 𝑇 ∪ ¬𝜑 is 

finitely satisfiable.  

 

Corollary 2.1.2 [1, 38] Let 𝑇 be a finitely satisfiable theory of a language 𝔏, 

then there exists a maximal finitely satisfiable 𝔏-theory 𝑇′ with 𝑇′ ⊇ 𝑇.  

 

Proposition 2.1.1 [1, P. 40] Let we are given an 𝔏-theory 𝑇 which has infinite 

models. If 𝜅 ≥ |𝔏| is an infinite cardinal, then there is a model of 𝑇 which has the 

cardinality 𝜅.  

 

A theory 𝑇 is called categorical if it is a consistent theory and all its models are 

pairwise isomorphic. 

Given an infinite cardinal 𝜅 and a theory 𝑇 which has models of size 𝜅, 𝑇 is 

called to be  𝜿-cathegorical if any two arbitrary models of cardinality 𝜅 of the theory 

𝑇  are isomorphic to each other [1, P. 40]. For an 𝜔 -categorical theory we have 

𝐼(𝑇, 𝜔) = 1. 

A structure 𝔐 is said to be 𝜶-categorical if its theory is 𝛼 - categorical. 

Following the definition, a complete theory which has exactly one countable 

model up to an isomorphism is called to be 𝝎-categorical (or ℵ0-categorical). 

 

Theorem 2.1.4 [1, P. 42] (Vaught’s Test) Given a countable theory 𝑇 which has 

no finite models. If the theory 𝑇 is 𝑘-categorical in an infinite cardinal 𝑘, then 𝑇 is 

complete. 

 

Proposition 2.1.2 [1, P. 45; 3, P. 18] (Tarski-Vaught test) Suppose that 𝑀 is a 

subset of a universum of a structure 𝔑. Then, 𝑀 is a universum of an elementary 

substructure 𝔐 of 𝔑 if and only if for every formula 𝜑(𝑣, 𝑤̅) and every 𝑎̅ ∈ 𝑀, 

existence of 𝑏 ∈ 𝑁 with 𝔑 ⊨ 𝜑(𝑏, 𝑎̅) implies that there is an element 𝑐 of 𝑀 such 

that 𝔑 ⊨ 𝜑(𝑐, 𝑎̅).  

 

The Tarski-Vaught test is one of the main tools used in the dissertation during 

construction of models. 

 

Theorem 2.1.5 [1, P. 45] (Upward Löwenheim-Skolem Theorem) Let we are given 

an infinite 𝔏-structure 𝑀 , let 𝜅 ≥ |𝑀| + |𝔏|. Then there exists an 𝔏-structure 𝔑 

with |𝑁| = 𝜅 and 𝑗: 𝔐 → 𝔑 elementary.  

 

Theorem 2.1.6 [1, P. 46] (Downward Löwenheim-Skolem Theorem) Let we are 

given an 𝔏 -structure 𝔐  and a subset 𝑋 ⊆ 𝑀 . Then, there exists an elementary 

submodel 𝔑 of 𝔐 with 𝑋 ⊆ 𝑁 and |𝑁| ≤ |𝑋| + |𝔏| + ℵ0.  
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Definition 2.1.2 [2, P. 42] Let we are given an 𝔏-structure 𝔐. An 𝐧-type of 𝔐 

over a set 𝐴 is a set 𝑝(𝑥̅) consisting of formulas of the extended language 𝔏(𝐴), such 

that for some 𝑎̅, a tuple of elements of 𝑀, 𝔐 ⊨ 𝜑(𝑎̅) holds for all formulas 𝜑(𝑥̅) of 

the type 𝑝. 

 

In this case we say that the model 𝔐 realizes the 𝑛-type 𝑝. If no elements of 𝑀 

realize the type 𝑝, 𝔐 is said to omit p. 

An n-type 𝑝(𝑥̅) is said to be complete if for every formula 𝜑(𝑥̅) ∈ 𝔐(𝐴, 𝑥̅) 

either 𝜑(𝑥̅) ∈ 𝑝(𝑥̅) or ¬𝜑(𝑥̅) ∈ 𝑝(𝑥̅), that is the type is maximal. By 𝑆𝑛(𝑇) we will 

denote the set of all complete 𝑛-types of the theory 𝑇. In the dissertation we will 

usually work with complete types. 

A principal type is a type 𝑝(𝑥̅) such that there is a formula 𝜑(𝑥̅) such that for 

every 𝜃(𝑥̅) ∈ 𝑝(𝑥̅), Γ ⊨ 𝜑(𝑥̅) → 𝜃(𝑥̅). This formula 𝜑 is said to be an isolating, or 

a principal formula of the type 𝑝. 

A type 𝑝 ∈ 𝑆(𝐴) is said to be algebraic, if there exists an integer 𝑛 < 𝜔 such 

that |𝑝(𝑀)| ≤ 𝑘 for every model 𝔐 ⊨ 𝑇(𝐴). It is easy to see that every algebraic type 

is isolated. 

 

Proposition 2.1.3 [1, P. 116] Let we are given an 𝔏-structure 𝔐, let 𝐴 ⊆ 𝑀, and 

𝑝 be an 𝑛-type over 𝐴. Then there is such an elementary extension 𝔑 of 𝔐 that 

realizes the type 𝑝.  

 

Theorem 2.1.7 [1, P. 125] (Omitting Types Theorem) Let we are given a theory 

𝑇 of a countable signature 𝔏, and let 𝑝 ∈ 𝑆𝑛(𝑇) be a non-isolated 𝑛-type. Then the 

theory 𝑇 has a model omitting 𝑝. 

 

The previous theorem can be easily generalized to a case with a countable set of 

nonisolated types. 

 

Theorem 2.1.8 [1, P. 127] Let we are given a theory 𝑇 of a countable signature 

𝔏. Let 𝑝1, 𝑝2, ...,𝑝𝑘 , ...∈ 𝑆𝑛(𝑇) be a countable family of non-principal types of 𝑇. 

Then the theory 𝑇 has a model omitting every of these 𝑛-types. 

 

Definition 2.1.3 [2, P. 134] Let 𝔐 be a structure. 

1) An algebraic closure, 𝑎𝑐𝑙(𝐴), of the set 𝐴 ⊆ 𝑀 is the union of all 𝐴-definable 

finite sets of singletons. That is, 𝑎𝑐𝑙(𝐴) = {𝑏 ∈ 𝑀 |  there exists a formula 

𝜑(𝑥, 𝑎̅), 𝑎̅ ∈ 𝐴,  and a natural number 𝑛 < 𝜔  such that 𝔐 ⊨ 𝜑(𝑏, 𝑎̅) ∧
∃=𝑛𝑥𝜑(𝑥, 𝑎̅)}. 

2) A definable closure, 𝑑𝑐𝑙(𝐴), of the set 𝐴 ⊆ 𝑀 is the union of all 𝐴-definable 

sets of singletons of cardinality 1. That is, 𝑎𝑐𝑙(𝐴) = {𝑏 ∈ 𝑀 |  there exists a formula 

𝜑(𝑥, 𝑎̅), 𝑎̅ ∈ 𝐴,  such that 𝔐 ⊨ 𝜑(𝑏, 𝑎̅) ∧ ∃=1𝑥𝜑(𝑥, 𝑎̅)}. 
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2.2 Main Kinds of Models and Theories. Dependent Theories 

 

A model 𝔐 of 𝑇 is called a prime model of the theory 𝑇 if for every other 

model 𝔑 ⊨ 𝑇  there exists an elementary embedding from 𝔐 into 𝔑. A structure 

𝔐 ⊨ 𝑇 is atomic if for all tuples 𝑎̅ ∈ 𝑀𝑛, 𝑡𝑝(𝑎̅/∅) is a principal type. For complete 

countable theories the notions of a prime and of an atomic model are equivalent. In 

general, a model is prime if and only if it is both prime and atomic. Also, all prime 

models of the same theory are isomorphic [3, P. 59]. 

Let 𝑘 to be an infinite cardinal. A structure 𝔐 of a language 𝔏 is 𝒌-saturated 

if for every family 𝐹 = {𝐷𝑖; 𝑖 < 𝑘} consisting of definable subsets of the structure 𝑀 

with the finite intersection property, there exists an element 𝑎 ∈ 𝑀, with 𝑎 ∈ ⋂𝑖<𝑘 𝐷𝑖. 

A model 𝔐 is called saturated if it is |𝑀|-saturated, that is for all 𝐴 ⊂ 𝑀, if |𝐴| <
|𝑀| and 𝑝 ∈ 𝑆𝑛(𝐴), then 𝑝 is realized in 𝔐. 

A weak form of saturation is homogeneity. A model 𝔐 ⊨ 𝑇  is called 

homogeneous if for every subset 𝐴 ⊆ 𝑀 , with cardinality of 𝐴  less than the 

cardinality of 𝑀, for every partial elementary map 𝑓: 𝐴 → 𝑀 and every 𝑎 ∈ 𝑀, there 

exists a function 𝑓∗ ⊇ 𝑓  for which 𝑓∗: 𝐴 ∪ {𝑎} → 𝑀  is also a partial elementary 

mapping. 

 

Theorem 2.2.1 [1, P. 138] If a model is saturated, then it is homogeneous.  

 

Theorem 2.2.2 [1, P. 145] Any two countable models of a same complete theory 

of a countable language which are homogeneous and realize the same ∅-definable 𝑛-

types for every 𝑛 ≥ 1, are isomorphic. 

 

The previous theorem implies that if there is a countable family of nonisomorphic 

models which realize the same ∅-definable n-types for every 𝑛 ≥ 1 (that is, they 

have the same finite diagram), then all of them, except maybe one model, are not 

homogeneous. 

A model is universal if every model of the given theory of the same cardinality 

can be elementarily embedded into it. 

Below we present the main kinds of theories. Examples and a nice visual 

representation can be found at the website [58]. 

A formula 𝜑(𝑥̅, 𝑦̅) has the independence property (or IP), if there exist two 

sequences 𝑎̅𝑖, 𝑖 < 𝜔 and 𝑏̅𝐼, with 𝐼 ⊆ 𝜔 for which ⊨ 𝜑(𝑎̅𝑖 , 𝑏̅𝐼) ⇔ 𝑖 ∈ 𝐼. A theory is 

called dependent (NIP) [59] if all its formulas are NIP, that is no formula of the theory 

has the independence property. 

A formula 𝜑(𝑥̅, 𝑦̅) has the strict order property (in short SOP) [59, P. 33], if 

there are such tuples 𝑎̅𝑖, 𝑖 < 𝜔, for which  

 

⊨ ∃𝑥̅(𝜑(𝑥̅, 𝑎̅𝑗 ∧ ¬𝜑(𝑥̅, 𝑎̅𝑖)) ⇔ 𝑖 < 𝑗. 

 

A theory is called to be NSOP if no its formula has the strict order property. 
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A countable theory 𝑇 is 𝜆-stable, if |𝑆𝑛(𝐴)| ≤ 𝜆 for every subset 𝐴 with |𝐴| ≤
𝜆 for all structures 𝔐 ⊨ 𝑇. A theory is said to be stable [2, P. 308] if there is an infinite 

cardinal 𝜆 such that 𝑇 is 𝜆-stable. A theory 𝑇 is called superstable if there exists 

such a cardinal 𝜅 that the theory 𝑇 is 𝜆-stable for every 𝜆 > 𝜅 [2, P. 310]. 

A theory is a strongly minimal theory if in every structure 𝔐 ⊨ 𝑇  every 

definable set of 𝔐 is either finite or cofinite [1, P 78]. Every strongly minimal theory 

is 𝜔-stable, every 𝜔-stable theory is superstable, every superstable theory is stable, 

and every stable theory is dependent (NIP) and NSOP. 

A class of theories that both NIP and SOP includes an important subclass of o-

minimal theories, which, in its turn, a subclass of weakly o-minimal theories. 

A theory 𝑇 of (an extension of) a linear order is called an o-minimal theory [60] 

if in every model 𝔐 ⊨ 𝑇 every definable subset of 𝑀 can be represented as a finite 

union of points in 𝑀 and intervals with endpoints in 𝑀. The theory 𝑇 is said to be 

weakly o-minimal if for each model 𝔐 ⊨ 𝑇 every definable subset of 𝑀 is a union 

of a finitely number of convex sets in 𝑀. This class will be given more attention in the 

Section 8. 

  

2.3 Number of Countable Models. Small Theories 

 

Let 𝑇  be a countable complete theory, 𝔐 be a model of 𝑇 . The number of 

different up to an isomorphism models of 𝑇 of cardinality 𝜆 is denoted by 𝐼(𝑇, 𝜆). 

Theories with a finitely many, but more than one, countable models are called 

Ehrenfeucht theories. 

 

Theorem 2.3.1 [61] Let 𝔏 be a countable first order language. Then there are at 

most 2𝜔 many countable models for the language 𝔏.  

 

A theory which has no more than countable number of no more than countable 

models is small. But the converse is not true. 

 

Lemma 2.3.1 [49, P. 2] Let we are given a theory 𝑇 of a countable language. 

Then |𝑆𝑛(𝑇)| > 𝜔 implies |𝑆𝑛(𝑇)| = 2𝜔, 𝑛 < 𝜔. 

 

Let us recall that 

 

Definition 2.3.1 [3, P. 53] A theory T is small if for every natural number 𝑛 < 𝜔, 

|𝑆𝑛(∅)| ≤ 𝜔.  

 

Lemma 2.3.2 [49, P. 1] The following points are equivalent: 

1) The theory 𝑇 is a small theory; 

2) For every 𝑛 < 𝜔, and for all finite sets 𝐴, |𝑆𝑛(𝐴)| ≤ 𝜔; 

3) For all finite sets 𝐴, |𝑆1(𝐴)| ≤ 𝜔; 

4) 𝑇 has a countable saturated model. 

 



21 

 

Proposition 2.3.1 [49, P. 2] 1) All the countable 𝜔-cathegorical theories are 

small theories. 

2) All the 𝜔-stable theories are small theories. 

 

Proposition 2.3.2 [4, P. 154] If we are given a small theory 𝑇, then for every 

finite subset of a set 𝐴 there exists a prime model over 𝐴. 

 

Fact 2.3.1 [49, P. 2] If 𝑘 ≥ |𝑇|, then 𝐼(𝑇, 𝑘) ≤ 2𝑘.  

 

Theorem 2.3.2 [49, P. 2] If 𝑇 is a non-small theory, then 𝐼(𝑇, 𝜔) = 2𝜔, that is 

the number of countable models of 𝑇 up to an isomorphism is maximal. 

  

Thereby, Theorem 2.3.2 allows us to narrow down the problem of countable 

spectrum of complete countable theories to investigating the countable spectrum only 

of those theories, which are small. 
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3 FINITE DIAGRAMS 

 

Let 𝑇 be a countable complete theory. As always, by 𝑆(𝑇) we will denote the 

set of all the complete types of the given theory 𝑇 over an empty set. 

 

Hypothesis 3.1 [50, P. 1] Let we are given the following countable sets of types 
{𝑝𝑖 ∈ 𝑆(𝑇) | 𝑖 < 𝜔} and {𝑞𝑖 ∈ 𝑆(𝑇) | 𝑖 < 𝜔}, and all the types are non-principal. 

If for every natural number 𝑛 < 𝜔 there exists a model 𝔐𝑛 of theory 𝑇, in which for 

every 𝑖 ≤ 𝑛 the types 𝑝𝑖 are realized and the types 𝑞𝑖 are omitted, then there exists 

𝔐 ⊨ 𝑇 which is countable and such all the types 𝑝𝑖, 𝑖 < 𝜔 are realized in 𝔐 and all 

the types 𝑞𝑖, 𝑖 < 𝜔 are omitted in this structure. 

 

Definition 3.1 Given a structure 𝔐 ⊨ 𝑇 𝒟(𝔐) denotes the set consisting of all 

complete types which are realized in the structure 𝔐: 𝒟(𝔐) = {𝑝 ∈ 𝑆(𝑇) | 𝔐 ⊨
𝑝}. We call the set 𝒟(𝔐) the finite diagram (or dowry) of the model 𝔐.  

 

In [62] the following theorem has been proved. 

 

Theorem 3.1 [62, P. 50] Under condition of Hypothesis 3.1, if the theory 𝑇 has 

more than 𝜔 of different finite diagrams, then 𝐼(𝑇, 𝜔) = 2𝜔. 

 

Proof of Theorem 3.1 By Λ let us denote the set of all the finite diagrams of all 

models of theory 𝑇 : Λ = {𝐷 | ∃𝔐 ∈ 𝑀𝑜𝑑(𝑇), 𝒟(𝔐) = 𝐷}.   

 

Lemma 3.1 Let |𝑆(𝑇)| = 𝜔, |𝛬| ≥ 𝜔1, then there is 𝑝0, a type for which |𝛬0| ≥
𝜔1 and |𝛬1| ≥ 𝜔1, where 

  

Λ0 = {𝒟(𝔐)  |  𝑝0 ∈ 𝒟(𝔐) ∈ Λ}; 

Λ1 = {𝒟(𝔐)  |  𝑝0 ∈ 𝒟(𝔐) ∈ Λ}. 

 

Proof of Lemma 3.1 Let 𝑝1, 𝑝2, . . . , 𝑝𝑛, . .. be a list of all non-principal types from 

𝑆(𝑇). For any 𝑛 a type 𝑝𝑛 divides the set Λ into two parts, Λ0
(𝑛)

 and Λ1
(𝑛)

, where 

 

Λ0
(𝑛)

= {𝒟(𝔐)  |  𝑝𝑛 ∈ 𝒟(𝔐) ∈ Λ}; 

Λ1
(𝑛)

= {𝒟(𝔐)  |  𝑝𝑛 ∈ 𝒟(𝔐) ∈ Λ}. 

 

Towards a contradiction assume that the lemma is not false. Then, for every 

natural number 𝑛, we have either |Λ0
(𝑛)

| ≤ 𝜔 or |Λ1
(𝑛)

| ≤ 𝜔. 

Let 𝐵𝑛 = Λ0
𝑛, if |Λ0

(𝑛)
| ≤ 𝜔; 𝐵𝑚 = Λ1

𝑛, if |Λ1
(𝑛)

| ≤ 𝜔. 

Since for any 𝑛  |𝐵𝑛| ≤ 𝜔 , | ⋃𝑛<𝜔 𝐵𝑛| ≤ 𝜔 . And therefore |Λ\ ⋃𝑛<𝜔 𝐵𝑛| ≥
𝜔1. Take two different elements 𝐷1 and 𝐷2 from Λ\ ⋃𝑛<𝜔 𝐵𝑛. There exists a type 

𝑝𝑚 such that 𝑝𝑚 ∈ 𝐷1 and 𝑝𝑚 ∈ 𝐷2. 
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There may be two cases: 

1) 𝐵𝑚 = Λ0
(𝑚)

. In this case, 𝑝𝑚 ∈ 𝐷1 ∈ Λ0
(𝑚)

= 𝐵𝑚 . But 𝐷1 ∈ Λ\ ⋃𝑛<𝜔 𝐵𝑛 , 

therefore, 𝐷1 ∈ 𝐵𝑚. And we obtain a contradiction. 

2) 𝐵𝑚 = Λ1
(𝑚)

. In this case, 𝑝𝑚 ∈ 𝐷2 ∈ Λ1
(𝑚)

= 𝐵𝑚 . But 𝐷2 ∈ Λ\ ⋃𝑛<𝜔 𝐵𝑛 , 

therefore, 𝐷2 ∈ 𝐵𝑚. And we obtain a contradiction. 

           □ 

In order to proof the Theorem 3.1 consider two cases: 

1) |𝑆(𝑇)| > 𝜔. In this case |𝑆(𝑇)| = 2𝜔, 𝐼(𝑇, 𝜔) = 2𝜔. 

2) |𝑆(𝑇)| = 𝜔. Consider an arbitrary listing 𝑡1, 𝑡2, . . . , 𝑡𝑛, . ..; 𝑡𝑛 ∈ 𝑆(𝑇) of all 

non-principal types from 𝑆(𝑇). 

We will construct a tree by the following steps: 

Step 1. By the Lemma 0.1 we will find the smallest number 𝑚, such that 

  

Λ0 = {𝒟(𝔐)  |  𝑡𝑚 ∈ 𝒟(𝔐) ∈ Λ}; 

Λ1 = {𝒟(𝔐)  |  𝑡𝑚 ∈ 𝒟(𝔐) ∈ Λ}; 

 

|Λ0| ≥ 𝜔1, |Λ1| ≥ 𝜔1. 

 

Step k-1. On this stage we will have 2𝑘−1  disjoint sets Λ𝜏  with |Λ𝜏| ≥ 𝜔1 , 

where 𝜏 ∈ {0,1} and length of 𝜏 is equal to 𝑘 − 1. 

Step k. For any 𝜏 let 𝑚𝜏 be the smallest with the property 

 

Λ𝜏0
= {𝒟(𝔐)  |  𝑡𝑚𝜏

∈ 𝒟(𝔐) ∈ Λ𝜏}; 

Λ𝜏1
= {𝒟(𝔐)  |  𝑡𝑚𝜏

∈ 𝒟(𝔐) ∈ Λ𝜏}; 

 

|Λ𝜏0
| ≥ 𝜔1, |Λ𝜏1

| ≥ 𝜔1. 

 

On this step we have 2𝑘 sets, each of which has cardinality greater or equal to 

𝜔1, and for any 𝜏1 ≠ 𝜏2, Λ𝜏1
∩ Λ𝜏2

= ∅. 

Each branch of 2𝜔  branches of the obtained tree, will be characterized by a 

sequence 𝑡𝑚 , 𝑡𝑚𝜏1
, . . . , 𝑡𝑚𝜏𝑘

, . .. of types, which we can divide according to belonging 

of the type 𝑡𝑚𝜏𝑛
 to the finite diagrams of the set Λ𝜏𝑛+1

 into two sequences: 

𝑝0, 𝑝1, . . . , 𝑝𝑘 , . .. and 𝑞0, 𝑞1, . . . , 𝑞𝑘, . ... If 𝑡𝑚𝜏𝑖
= 𝑝𝑘, then, beginning from 𝑖 there are 

models 𝔐𝑛 of 𝑇, 𝑛 > 𝑖, such that 𝑝𝑘 is realized in all the models 𝔐𝑛. If 𝑡𝑚𝜏𝑖
= 𝑞𝑘, 

then, beginning from 𝑖 there are models 𝔐𝑛 ⊨ 𝑇, 𝑛 > 𝑖, which omit the type 𝑞𝑘. 

Therefore, by the Hypothesis 3.1 there are a countable model 𝔐, which will 

realize all the 𝑝𝑘 and omit all the 𝑞𝑘. And all models corresponding to the different 

branches of the tree will be non-isomorphic since they differ in the collections of types. 

Thus, there are 2𝜔 countable non-isomorphic models. 

           □ 
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Corollary 3.1 [62, P. 52] Under condition of Hypothesis 3.1, if there exists a 

theory 𝑇 which is countable and has 𝜔1 countable nonisomorphic models, then there 

is such a finite diagram 𝐷 ∈ 𝛬, for which 𝐷 = 𝒟(𝔐𝑖), 𝔐𝑖 ∈ 𝑀𝑜𝑑(𝑇), 𝑖 < 𝜔1. 

 

That is, there are at least 𝜔1 models of 𝑇 having the same diagram. 

 

Proof of Corollary 3.1 The Theorem 3.1 implies that 

  

|Λ| > 𝜔 ⇒ 𝐼(𝑇, 𝜔) = 2𝜔. 

 

Then, 𝐼(𝑇, 𝜔) < 2𝜔 implies that |Λ| ≤ 𝜔. Therefore |Λ| ≤ 𝜔. 

Suppose that the Corollary 0.1 does not holds. Then, for any finite diagram 𝐷𝑖 

|{𝔄 | 𝔄 ⊨ 𝑇, 𝒟(𝔄) = 𝐷𝑖}| ≤ 𝜔. 

Therefore, | ⋃𝐷𝑖∈Λ {𝔄 | 𝔄 ⊨ 𝑇, 𝒟(𝔄) = 𝐷𝑖}|  ≤ 𝜔 , what is a contradiction 

with our assumption that 𝐼(𝑇, 𝜔) = 𝜔1. 

           □ 

Corollary 3.2. [15, P. 170] Under condition of Hypothesis 3.1, if there exists a 

countable complete theory which has 𝜔1 countable nonisomorphic models, then 

there exists a finite diagram which has 𝜔1 countable nonisomorphic non-

homogeneous models. 
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4 WEAK AND ALMOST ORTHOGONALITY 

 

Definition 4.1 [45, P. 230] Two types 𝑝(𝑥̅) and 𝑞(𝑦̅) from 𝑆(𝐴) are called 

weakly orthogonal, if 𝑝(𝑥̅) ∪ 𝑞(𝑦̅) has a unique extension to a complete type over 

the set 𝐴.  

 

The relation of weak orthogonality of two types 𝑝 and 𝑞 is denoted by 𝑝 ⊥𝑤 𝑞. 

The types 𝑝 and 𝑞 are not weakly orthogonal, which is written as 𝑝 ⊥𝑤 𝑞, if 

the number of extensions of 𝑝(𝑥̅) ∪ 𝑞(𝑦̅) to a complete type at least equals to 2. 

It is obvious, that 

 

Fact 4.1 If in a countable small theory 𝑇  for any finite set of types 
{𝑝1(𝑥̅1), . . . , 𝑝𝑛(𝑥̅𝑛) | 𝑝𝑖 ∈ 𝑆(𝑇), 𝑛 < 𝜔},  (𝑝1 ∪ 𝑝2 ∪. . .∪ 𝑝𝑛)(𝑥̅1, 𝑥̅2, . . . , 𝑥̅𝑛)  is a 

complete type, then 𝐼(𝑇, 𝜔) = 2𝜔. 

 

Definition 4.2 [62, P. 43] The types 𝑝  and 𝑞  are called to be not almost 

orthogonal if for some formula 𝜑(𝑥̅, 𝑦̅), and some model 𝔐 ⊨ 𝑇 realizing 𝑝, such 

that for a tuple 𝛼̅ ∈ 𝑝(𝑀), we have ∅ ≠ 𝜑(𝑀, 𝛼̅) ⊂ 𝑞(𝑀). 

 

The relation of not almost orthogonality of types 𝑝 and 𝑞 is denoted by 𝑝 ⊥𝑎 𝑞. 

Otherwise, the types are called almost orthogonal, 𝑝 ⊥𝑎 𝑞. 

The notions of weak and almost orthogonality of types are of a big importance in 

the direction of the dissertation, since, even when they are not noted explicitly, they 

are present in every main concept and proof we will encounter. 

 

Definition 4.3 Let 𝛤 be a locally consistent set of formulas, 𝑞 be a type from 

𝑆(𝑇). The family 𝛤 is almost orthogonal to the type 𝑞, written as 𝛤 ⊥𝑎 𝑞, if every 

extension of the set 𝛤 is almost orthogonal to the type 𝑞.  

 

Proposition 4.1 The types 𝑝 and 𝑞 will be not almost orthogonal, 𝑞 ⊥𝑎 𝑝 if and 

only if there exists such a formula 𝜑(𝑥̅, 𝑦̅), that for each model 𝔐 realizing 𝑇 with 

the condition 𝔐 ⊨ 𝑝, for every 𝛼̅ ∈ 𝑝(𝑀) we have ∅ ≠ 𝜑(𝑀, 𝛼̅) ⊂ 𝑞(𝑀). 

 

Proof of Proposition 4.1 The part “if” is obvious. 

We know that ∃𝛼̅  𝜑(𝑀, 𝛼̅) ⊂ 𝑞(𝑀) = ⋂𝜃∈𝑞 𝜃(𝑀).  Therefore, we have that 

𝜑(𝑀, 𝛼̅) ⊂ 𝜃(𝑀) for every formula 𝜃 from the type 𝑞. 

The following holds 𝔐 ⊨ ∀𝑥̅(𝜑(𝑥̅, 𝛼̅) → 𝜃(𝑥̅))  for every 𝜃  from 𝑞 . Denote 

∀𝑥̅(𝜑(𝑥̅, 𝛼̅) → 𝜃(𝑦̅)) by 𝐾𝜃(𝛼̅). 𝐾𝜃(𝛼̅) ∈ 𝑝. 

Let, for some 𝔐′ ⊨ 𝑇 , 𝛼̅′ ∈ 𝑝(𝑀′) . Therefore, 𝔐′ ⊨ 𝐾𝜃(𝛼̅′) . 𝔐′ ⊨
∀𝑥̅(𝜑(𝑥̅, 𝛼̅′) → 𝜃(𝑥̅)) for every formula 𝜃 from the type 𝑞. 

We have that 𝜑(𝑀′, 𝛼̅′) ⊂ 𝜃(𝑀′) for every formula 𝜃 from the type 𝑞. Which 

follows that, 𝜑(𝑀′, 𝛼̅′) ⊂ ⋂𝜃∈𝑞 𝜃(𝑀′) = 𝑞(𝑀′). 

           □ 



26 

 

The following are important facts about types and their relations which are used 

during the next sections. 

 

Lemma 4.1 1) Let 𝑝 , 𝑞 ∈ 𝑆(𝐴) , 𝑝  be principal, 𝑞  be non-principal. Then 

𝑝 ⊥𝑎 𝑞. 

2) Let we are given a small theory 𝑇, and let 𝔐 = 〈𝑀, 𝛴〉, then for each formula 

𝜓(𝑥̅, 𝑏̅), 𝑏̅ ∈ 𝑀  there is a subformula 𝜓0(𝑥̅, 𝑏̅) such that 𝜓0(𝑥̅, 𝑏̅) determines an 

isolated type over 𝑏̅. 

3) [13, P. 47] Let 𝑝, 𝑞 ∈ 𝑆(𝐴), 𝑞 be non-principal, 𝔐 = 〈𝑀, 𝛴〉 be a model of 

a small theory 𝑇, and 𝐴 ⊂ 𝑀 be a finite set. Then the types 𝑝 and 𝑞 are almost 

orthogonal if and only if for 𝑐̅ ⊨ 𝑝  and every type 𝑞′ ∈ 𝑆(𝐴𝑐̅) for which 𝑞(𝑥̅) ⊂
𝑞′(𝑥, 𝑐̅) we have that the type 𝑞′(𝑥̅, 𝑐̅) is not principal. 

4) If 𝑡𝑝(𝑐̅𝑑̅/𝑏̅) ⊥𝑎 𝑞(𝑥, 𝑏̅) is non-principal, 𝑡𝑝(𝑑̅/𝑐̅) is principal, then  

𝑡𝑝(𝑐̅/𝑏̅) ⊥𝑎 𝑞(𝑥, 𝑏̅) . Equivalently, if 𝑡𝑝(𝑐̅/𝑏̅) ⊥𝑎 𝑞(𝑥, 𝑏̅)  is non-principal, 

𝑡𝑝(𝑑̅/𝑐̅) is principal, then 𝑡𝑝(𝑐̅𝑑̅/𝑏̅) ⊥𝑎 𝑞(𝑥, 𝑏̅). 

Let 𝑞(𝑥̅, 𝑏̅)  be non-principal, 𝑡𝑝(𝑐̅𝑑̅/𝑏̅) ⊥𝑎 𝑞(𝑥, 𝑏̅)  and 𝑡𝑝(𝑑̅/𝑐̅𝑏̅)  be 

principal, then 𝑡𝑝(𝑐̅/𝑏̅) ⊥𝑎 𝑞(𝑥, 𝑏̅) . If 𝑡𝑝(𝑐̅/𝑏̅) ⊥𝑎 𝑞(𝑥, 𝑏̅)  and 𝑡𝑝(𝑑̅/𝑐̅𝑑̅)  is 

principal, then 𝑡𝑝(𝑐̅𝑑̅/𝑏̅) ⊥𝑎 𝑞(𝑥̅, 𝑏̅). 

5) Let 𝑏̅ ∈ 𝑀, 𝑐̅ ∈ 𝑁 𝑀, 𝜓0(𝑥, 𝑏̅, 𝑐̅) defines a principal type over 𝑏̅𝑐̅, 𝑞(𝑥, 𝑦̅) ∈
𝒟(𝔐). Then the following holds: if 𝑞(𝑁, 𝑏̅) ∩ 𝑀 = ∅ then 𝜓0(𝑁, 𝑏̅, 𝑐̅) ⊂ 𝑞(𝑁, 𝑏̅) or 

𝜓0(𝑁, 𝑏̅, 𝑐̅) ∩ 𝑞(𝑁, 𝑏̅) = ∅.  

 

Proof of Lemma 4.1 1) Let us suppose that 𝑝 ⊥𝑎 𝑞. Then for some realization 

𝑎̅ ∈ 𝑝(𝑀) there is a formula 𝜑(𝑥̅, 𝑦̅) having the following property ∅ ≠ 𝜑(𝑀, 𝑎̅) ⊂
𝑞(𝑀). Since 𝑝(𝑦̅) is a principal type, there is exists isolating formula 𝜃(𝑦̅) for which 

𝑝(𝑀) = 𝜃(𝑀) . Now let us consider the following 𝐴-formula 𝐻(𝑥̅): = ∃𝑦(𝜃(𝑦) ∧
𝜑(𝑥̅, 𝑦̅)). So we have 𝐻(𝑀) ⊂ 𝑞(𝑀), what contradicts to 𝑞 being non-principal. 

2) Note that if the formula 𝜓(𝑥̅, 𝑏̅) has no subformulas defining an isolating type, 

then every its subformula has the same property. Consider an arbitrary subformula 

𝜓1(𝑥̅, 𝑏̅) ⊂ 𝜓(𝑥̅, 𝑏̅). Then the formula 𝜓0(𝑥̅, 𝑏̅): = 𝜓(𝑥̅, 𝑏̅) ∧ ¬𝜓1(𝑥̅, 𝑏̅) is a proper 

subformula of 𝜓(𝑥̅, 𝑏̅). Therefore for every finite sequence 𝜏 = 〈𝜏1, 𝜏2, . . . , 𝜏𝑛〉 of 0’s 

and 1’s we can choose the following sequence of 𝑏̅-definable formulas: 𝜓𝜏(𝑥̅, 𝑏̅) ⊂
𝜓𝜏1,𝜏2,...,𝜏𝑛

(𝑥̅, 𝑏̅) ⊂. . . ⊂ 𝜓𝜏1
(𝑥̅, 𝑏̅). The last means existence of an infinite 2-branching 

tree of 𝑏̅-formulas, what contradicts with 𝑇 being small. 

3) Now let 𝑝 ⊥a 𝑞. Towards a contradiction suppose that that is there is 𝑐0̅ ∈ 𝑀 

with 𝑐0̅ ⊨ 𝑝 , there is a type 𝑞′ ∈ 𝑆(𝐴𝑐0̅) , such that 𝑞′(𝑥̅, 𝑐0̅)  is principal, and 

𝑞′(𝑀, 𝑐0̅) ⊂ 𝑞(𝑀). Since 𝑞′ is a principal over 𝐴𝑐0̅, there exists 𝜃(𝑥̅, 𝑐0̅), an 𝐴𝑐0̅-

formula , such that 𝑞′(𝑀, 𝑐0̅) = 𝜃(𝑀, 𝑐0̅)  and therefore, 𝑞′(𝑀, 𝑐0̅) ⊂ 𝑞(𝑀) , what 

contradicts to the condition of almost orthogonality of the types 𝑝 and 𝑞. 

Let every extension of the type 𝑞 over 𝐴 and any realization of the type 𝑝 is a 

non-principal type. We will obtain a contradiction by supposing that 𝑝 ⊥𝑎 𝑞. From the 

last it follows that there exist 𝑐0̅ ⊨ 𝑝  and an 𝐴𝑐0̅ -formula 𝜑(𝑥̅, 𝑐0̅)  such that 
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𝜑(𝑀, 𝑐0̅) ⊂ 𝑞(𝑀) . Then by the point 2) it follows that there exists an isolating 

subformula 𝜑0(𝑀, 𝑐0̅) ⊂ 𝜑(𝑀, 𝑐0̅) ⊂ 𝑞(𝑀). Then for some principal type 𝑞′ we have 

the following: 

  

𝜑0(𝑀, 𝑐0̅) = 𝑞′(𝑀, 𝑐0̅) ⊂ 𝑞(𝑀), 

 

what is a contradiction, since any extension of the type 𝑞 over any realization of 𝑝 is 

a non-principal type. 

4) If 𝑡𝑝(𝑐̅/𝑏̅) ⊥𝑎 𝑞(𝑥̅, 𝑏̅), then every type 𝑞(𝑥̅, 𝑏̅) ⊂ 𝑞′(𝑥̅, 𝑏̅𝑐̅) is non-principal. 

By the condition 3) 𝑡ℎ(𝑑̅/𝑐̅𝑏̅) ⊥ 𝑎𝑞′(𝑥/𝑐̅𝑏̅) for every 𝑞′(𝑥/𝑐̅𝑏̅) extending 𝑞′(𝑥, 𝑏̅). 

The last means that every 𝑞′′(𝑥/𝑏̅𝑐̅𝑑̅) extending 𝑞′(𝑥, 𝑏̅) will be non-principal. Then 

𝑡𝑝(𝑑̅𝑐̅/𝑏̅) ⊥𝑎 𝑞(𝑥̅𝑏̅). Let us suppose that 𝑡𝑝(𝑑̅𝑐̅/𝑏̅) ⊥𝑎 𝑞(𝑥̅𝑏̅). Then there is a formula 

𝜃(𝑀, 𝑏̅𝑑̅, 𝑐̅) ⊂ 𝑞(𝑀, 𝑏̅), and by the condition 2), 𝜃(𝑥̅, 𝑏̅𝑑̅, 𝑐̅) can be considered to be 

isolating for some principal type 𝑞′′(𝑥̅/𝑏̅𝑑̅𝑐̅). That is, 𝑞′′(𝑥̅/𝑏̅𝑑̅𝑐̅) is a principal type, 

what contradicts to the obtained condition that all the types 𝑞′′ are non-principal. 

5) In fact, we used the condition of almost orthogonality while formulating the 

point 5) in the following sense: 𝑡𝑝(𝑐̅/𝑏̅) ⊥𝑎 𝑞(𝑥, 𝑏̅) implies 𝜓0(𝑁, 𝑏̅, 𝑐̅) ∩ 𝑞(𝑁, 𝑏̅) =
∅. 

           □ 

Proposition 4.2 If 𝑝 and 𝑞 are two types from 𝑆(𝑇) with 𝑝 ⊥𝑎 𝑞. Then, if some 

model 𝔐 ⊨ 𝑇 realize the type 𝑝, then the type 𝑞 is also realized in 𝔐.  

 

Proof of Proposition 4.2 The Proposition states, that the realization of 𝑝 in some 

model of 𝑇  implies the realization of 𝑞  in the same model. In other terms, 𝑝  is 

powerful over 𝑞. 

If 𝑝 is realized in some structure 𝔐 ⊨ 𝑇, there exists an element 𝛼̅ ∈ 𝑝(𝑀). By 

the definition of an almost orthogonality, there is such a formula 𝜑(𝑥̅, 𝑦̅), that ∅ ≠
𝜑(𝑀, 𝛼̅) ⊂ 𝑞(𝑀), what means, that 𝑞(𝑀) is not empty, therefore 𝑞 is realized in 𝔐. 

           □ 

The type 𝑟 ∈ 𝑆(𝑇) is called to be dominated by a type 𝑡 ∈ 𝑆(𝑇), or in other 

words 𝑟  does not exceed the type 𝑡 , by the Rudin-Keisler preorder, denoted as 

𝑟 ≤𝑅𝐾 𝑡, if 𝔐𝑡 ⊨ 𝑟, that is, 𝔐𝑟 is an elementary submodel of 𝔐𝑡. 

If 𝑝 ⊥𝑎 𝑞, then 𝑞 ≤𝑅𝐾 𝑝. In small theories these two notions coincide. 

As in the previous section let us denote 

 

Λ𝑝: = {𝐷| there is a model 𝔐 ∈ 𝑀𝑜𝑑(𝑇), for which 𝔐 ⊨ 𝑝, 𝒟(𝑀) = 𝐷}. 

 

Then, if 𝑝 ⊥𝑎 𝑞, Λ𝑝 ⊆ Λ𝑞. 

 

Theorem 4.1 [62, P. 53] Let we have a countable small theory 𝑇, and let {𝑟𝑖|𝑖 <
𝜔} be a countable set of all non-isolated types from 𝑆(𝑇), then 

1) If for every 𝑟𝑖 ≠ 𝑟𝑗, 𝑟𝑖 ⊥𝑎 𝑟𝑗, then 𝐼(𝑇, 𝜔) ≥ 𝜔. 

2) If for every finite subset {𝑟𝑖1
, . . . , 𝑟𝑖𝑛

} of {𝑟𝑖}  
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(𝑟𝑖1
∪ 𝑟𝑖2

∪. . .∪ 𝑟𝑖𝑛
) ⊥𝑎 𝑟𝑘, 𝑘 < 𝜔, 

 

 then 𝐼(𝑇, 𝜔) = 2𝜔.  

 

Proof of Theorem 4.1 1) Take an arbitrary 𝑛 ∈ ℕ. Since 𝑟𝑛 ⊥𝑎 𝑟𝑖, ∀𝑖 ≠ 𝑛, 𝑖 <
𝜔, realization of 𝑟𝑛 does not imply realizations of 𝑟𝑖. Therefore, by the Theorem 0.1, 

there exists a model 𝔐𝔫 realizing the only type 𝑟𝑛. 

Since ∀𝑛, 𝑚 ∈ ℕ  𝑛 ≠ 𝑚  implies 𝔐𝑛 ≅ 𝔐𝑚 , there exists at least countable 

number of models. 

2) Let 𝜏 be a countable sequence of 0’s and 1’s. Divide {𝑟𝑖} into two ordered sets 

of types, namely, {𝑝𝑖}  and {𝑞𝑖} , for which 𝑟𝑖 = 𝑝𝑘  if 𝜏(𝑖) = 0  and 𝑟𝑖 = 𝑞𝑘  if 

𝜏(𝑖) = 1. 

For every 𝑛 ∈ ℕ let us take the finite parts of the sets {𝑝𝑖} and {𝑞𝑖}: {𝑝1, . . . , 𝑝𝑛} 

and {𝑞1, . . . , 𝑞𝑛}. Take a prime model 𝔐𝑛 over any extension of (𝑝1 ∪. . .∪ 𝑝𝑛). Since 

(𝑝1 ∪. . .∪ 𝑝𝑛) ⊥𝑎 𝑞𝑖 , 1 ≤ 𝑖 ≤ 𝑛, their realization does not imply realization of the 

types 𝑞𝑖, 1 ≤ 𝑖 ≤ 𝑛. Therefore, there the model 𝔐𝑛 will realize all 𝑝𝑖, and omit all 

𝑞𝑖, 𝑖 ≤ 𝑛. Then, we can construct a model 𝔐, realizing all 𝑝𝑖 and omitting all 𝑞𝑖. 

By construction, for every 𝜏 there there exists a model 𝔐𝜏. And all these models 

are not isomorphic, since they differ in at least one type. Therefore, 𝐼(𝑇, 𝜔) = 2𝜔. 

           □ 

Theorem 4.2 [62, P. 54] If the countable theory 𝑇 is small, and the countable set 
{𝑟𝑖 ∈ 𝑆(𝑇) | 𝑖 < 𝜔} of all non-isolated types with 𝑟𝑖 ⊥𝑎 𝑟𝑖+1 and 𝑟𝑖+𝑘 ⊥𝑎 𝑟𝑖 , then 

the number of non-isomorphic countable models of 𝑇 at least will be countable, that 

is, 𝐼(𝑇, 𝜔) ≥ 𝜔. 

 

Proof of Theorem 4.2 We will construct a model 𝔐𝑛 for every natural number 

𝑛. If a model 𝔐𝑖 realize a type 𝑟𝑖, then by the Proposition 4.2 it realizes all the types 

𝑟𝑗, 𝑗 > 𝑖. 

The model 𝔐1 realize a type 𝑟1 and, consequently, all the types 𝑟𝑖, 𝑖 < 𝜔. In 

the model 𝔐𝑖, by the Omitting Types Theorem, the types 𝑟𝑗, 𝑗 < 𝑖 are omitted, and, 

since 𝑟𝑙+𝑘 ⊥𝑎 𝑟𝑙, the types 𝑟𝑗, 𝑗 ≥ 𝑖 are realized. 

           □ 
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5 LINEAR ORDERS AND EXTREME TRIVIALITY 

 

In this section, like in study of o-minimality, we restrict to theories whose models 

are linearly ordered. But rather than the global hypothesis that all definable subsets are 

definable with just the order, we posit conditions on particular types and on the 

underlying linear order which imply the existence of continuum many countable 

models. 

In the article [53, P. 392] M. Rubin investigated theories of pure linear orders and 

their expansions using finite and countable sets of unary predicates. He proved that 

such a theory 𝑇 has the countable spectrum to be either finite or 2𝜔, and in case of 

finiteness of the language of 𝑇 is finite, then 𝑇 is either 𝜔-categorical, or it has the 

maximal number of countable non-isomorphic model. Thus M. Rubin solved the 

Vaught Conjecture for linear orders expanded by unary predicates. In our results there 

will be no restriction on language. 

Further in the section as usual we will consider small theories. Given a finite 

subset 𝐴 ⊆ 𝑀 of a model 𝔐 ⊨ 𝑇 , we will denote 𝑇(𝐴): = 𝑇ℎ(𝔐, 𝑎)𝑎∈𝐴. Note that 

if 𝑇 is a small theory, then the 𝑇(𝐴) is a small theory as well. Also the condition of 

𝑇 being small implies existence of a prime model, 𝔐(𝐴), of 𝑇 over the finite set 𝐴, 

and of a countably saturated model of 𝑇. If 𝑎̅1 , 𝑎̅2 , ..., 𝑎̅𝑛 ∈ 𝑀, 𝑛 ≥ 1, are some 

tuples of elements of 𝑀, then 𝑀(𝑎̅1, 𝑎̅2, . . . , 𝑎̅𝑛) will mean a prime model of 𝑇 over 

the set of all elements belonging to those tuples. 

  

5.1 Variants of triviality 

 

Definition 5.1.1 [63] Let 𝑇 be a small complete theory, 𝑝(𝑥̅) be a non-principal 

type over a finite subset 𝐴 of some model of 𝑇. 

1) The type 𝑝 is called extremely trivial, if for every natural number 𝑛 ≥ 1 and 

every sequence 𝛽̅1, 𝛽̅2 , ... 𝛽̅𝑛  of elements realizing the type 𝑝 , we have that 

𝑝(𝑀(𝛽̅1, 𝛽̅2, . . . , 𝛽̅𝑛, 𝑎̅)) = {𝛽̅1, 𝛽̅2. . . 𝛽̅𝑛}, where 𝑎̅ is some enumeration of the set 𝐴. 

2) The type 𝑝 is almost extremely trivial, if for every 𝑛 ≥ 1 and every sequence 

𝛽̅1, 𝛽̅2, ...𝛽̅𝑛 realizing the type 𝑝, 𝑝(𝑀(𝛽̅1, 𝛽̅2, . . . , 𝛽̅𝑛, 𝑎̅)) is finite. 

3) The type 𝑝 is said to be eventually extremely trivial, if for every natural 

number 𝑛 ≥ 1 there is 𝑚 ≥ 𝑛 and realizations 𝛽̅1, 𝛽̅2, ...𝛽̅𝑚 of the type 𝑝 for which 

𝑝(𝑀(𝛽̅1, 𝛽̅2, . . . , 𝛽̅𝑚, 𝑎̅)) = {𝛽̅1, 𝛽̅2, . . . , 𝛽̅𝑚}. 

 

It is easy to see that every extremely trivial type is almost extremely trivial, and 

every almost extremely trivial type is eventually extremely trivial. 

 

Example 5.1.1 [63, P. 720]  Let ℒ = {=, 𝑃𝑖}𝑖<𝜔, where the 𝑃𝑖 are unary, and let 

𝑇 be an ℒ-theory and that the Pi are a decreasing sequence of sets with each 𝑃𝑖 − 𝑃𝑖+1 

infinte. It can be axiomtized as follows.   

1) ∀𝑥 (𝑃𝑖+1(𝑥) → 𝑃𝑖(𝑥)) for all i < ω; and 

2) ∃≥𝑛𝑥 (𝑃𝑖(𝑥) ∧ ¬𝑃𝑖+1(𝑥)) for every natural number n < ω, and 𝑖 < 𝜔.  
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Then the type 𝑝(𝑥): = {𝑃𝑖(𝑥) | 𝑖 < 𝜔} is extremely trivial, and the theory 𝑇 

has ℵ0 countable models.  

 

Example 5.1.2 [63, P. 720]  Let ℒ = {=, 𝑃𝑖 , 𝑅}𝑖<𝜔  with the Pi  unary and R 

binary, k ≥ 2  be an integer, and Tk  be an ℒ -theory that asserts the Pi ’s are a 

descending sequence of definable sets and R is a relation of equivalence with infinitely 

many classes, all of cardinality k and such no equivalence class can be split by a Pi. 

Axioms:   

1) ∀𝑥  (𝑃𝑖+1(𝑥) → 𝑃𝑖(𝑥)) for every i < ω; 

2) ∃≥𝑛𝑥 (𝑃𝑖(𝑥) ∧ ¬𝑃𝑖+1(𝑥)) for every natural n < ω, i < ω; 

3) ∀𝑥 𝑅(𝑥, 𝑥); 

4) ∀𝑥∀𝑦  (𝑅(𝑥, 𝑦) → 𝑅(𝑦, 𝑥)); 

5) ∀𝑥∀𝑦∀𝑧  ((𝑅(𝑥, 𝑦) ∧ 𝑅(𝑦, 𝑧)) → 𝑅(𝑥, 𝑧)); 

6) ∀𝑥∃=𝑘𝑦 𝑅(𝑥, 𝑦); and 

7) ∀𝑥∀𝑦 ((𝑅(𝑥, 𝑦) ∧ 𝑃𝑖(𝑥)) → 𝑃𝑖(𝑦)) for every i < ω.  

 

Let 𝑝(𝑥): = {𝑃𝑖(𝑥)| 𝑖 < 𝜔}.The type 𝑝(𝑥) is almost extremely trivial, but is not 

extremely trivial. This theory has ℵ0 countable models: for every natural number n, a 

model with exactly kn realizations of p.  

 

Example 5.1.3 [63, P. 721]  Let ℒ = {=; <; 𝑃𝑖}𝑖<𝜔, with the 𝑃𝑖 unary and 𝑇 be 

an ℒ-theory axiomatized by the following: 

1) < is a dense linear order without endpoints; 

2) Pi’s are dense codense disjoint predicates.  

 

The type 𝑝(𝑥): = {¬𝑃𝑖(𝑥) | 𝑖 < 𝜔} is extremely trivial. This theory has 2ℵ0 

countable non-isomorphic models.  

 

The following example including a unary function shows that our results extend 

those of M. Rubin [53, P. 392]. 

 

Example 5.1.4 [63, P. 721] Modify Example 5.1.3 by adding a constant symbol 

0 and a unary function f satisfying 𝑓2(𝑥) = 𝑥 , 𝑓(0) = 0 and 𝑥 > 𝑦 > 0 implies 

𝑓(𝑥) < 𝑓(𝑦) < 0. 

The type 𝑝(𝑥): = {¬𝑃𝑖(𝑥)  |  𝑖 < 𝜔} is extremely trivial. By Theorem 5.2.3 

this theory has 2ℵ0 countable non-isomorphic models. 

 

Definition 5.1.2 [63, P. 721] 1) An 𝐴-definable formula 𝜑(𝑥̅, 𝑦̅1, 𝑦̅2, . . . , 𝑦̅𝑛, 𝑎̅) 

with 𝑎̅ and element of 𝐴, is called a 𝒑-𝒏-preserving formula, if for every sequence 

𝛽̅1, 𝛽̅2, ..., 𝛽̅𝑛 realizing the type 𝑝, 𝜑(𝑥̅, 𝛽̅1, 𝛽̅2, . . . , 𝛽̅𝑛, 𝑎̅) ⊢ 𝑝(𝑥̅). 

2) If 𝑞(𝑦̅1, . . . , 𝑦̅𝑛) (𝑛 < 𝜔) is an 𝐴-type with ⋃
1≤𝑖≤𝑛

𝑝(𝑦̅𝑖) ∪ { ∧
1≤𝑖≠𝑗≤𝑛

𝑦̅𝑖 = 𝑦̅𝑗} ⊆

𝑞. An 𝐴-definable formula 𝜑(𝑥̅, 𝑦̅1, 𝑦̅2, . . . , 𝑦̅𝑛, 𝑎̅), 𝑎̅ ∈ 𝐴, is called 𝐩-𝐪-preserving, if 
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for every sequence 𝛽̅1, 𝛽̅2, ..., 𝛽̅𝑛 realizing the type 𝑝, we have: 𝑡𝑝(𝛽̅1, . . . , 𝛽̅𝑛) = 𝑞 

implies 𝜑(𝑥̅, 𝛽̅1, 𝛽̅2, . . . , 𝛽̅𝑛, 𝑎̅) ⊢ 𝑝(𝑥̅). 

3) A 𝑝-𝑛-preserving (𝑝-𝑞-preserving) formula 𝜑(𝑥̅, 𝑦̅1, 𝑦̅2, . . . , 𝑦̅𝑛, 𝑎̅) is  non-

trivial, if for every model 𝔐 ⊨ 𝑇 and every realizations 𝛽̅𝑖, 1 < 𝑖 < 𝑛, of the type 𝑝 

in 𝔐 (with 𝑡𝑝(𝛽̅1, . . . , 𝛽̅𝑛/𝐴) = 𝑞) the set 𝜑(𝑀, 𝛽̅1, 𝛽̅2, . . . , 𝛽̅𝑛, 𝑎̅) contains at least 

one element other than 𝛽̅1, 𝛽̅2, . . . , 𝛽̅𝑛.  

 

Proposition 5.1.1 [63, P. 721] Let the theory 𝑇  be countable and complete, 

𝑝(𝑥̅) ∈ 𝑆(𝐴) be a non-principal type over a finite subset 𝐴 of some model of 𝑇. Then 

the type 𝑝 is extremely trivial if and only if for every 𝑛 ≥ 1 every 𝑝-𝑛-preserving 𝐴-

definable formula is trivial.  

 

Proof of Proposition 5.1.1 Further by 𝑎̅ we will denote a tuple enumerating the 

set 𝐴. 

(⇒) Let 𝑝 be extremely trivial, 𝛽̅1, 𝛽̅2, ..., 𝛽̅𝑛 (𝑛 ≥ 1) be realizations of 𝑝, and 

𝜑(𝑥̅, 𝑦̅1, 𝑦̅2, . . . , 𝑦̅𝑛 , 𝑎̅) be a 𝑝-𝑛-preserving 𝐴-definable formula. Directly from the 

definitions it follows that 𝜑(𝑀(𝛽̅1, 𝛽̅2, . . . , 𝛽̅𝑛, 𝑎̅), 𝛽̅1, 𝛽̅2, . . . , 𝛽̅𝑛, 𝑎̅) ⊆ 

𝑝((𝑀(𝛽̅1, 𝛽̅2, . . . , 𝛽̅𝑛, 𝑎̅)) = {𝛽̅1, 𝛽̅2, . . . , 𝛽̅𝑛}. 

Therefore, the formula 𝜑 is trivial. 

( ⇐ ) Now suppose that for every 𝑛 ≥ 1  every 𝑝 - 𝑛 -preserving 𝐴 -definable 

formula is trivial. Take a finite number of arbitrary realizations of 𝑝, namely, 𝛽̅1, 𝛽̅2, 

..., 𝛽̅𝑛 . Towards a contradiction let us suppose that there exists a realization 𝛽̅ ∈ 

𝑝((𝑀(𝛽̅1, 𝛽̅2, . . . , 𝛽̅𝑛, 𝑎̅)) other than 𝛽̅1, 𝛽̅2, ..., 𝛽̅𝑛. Let 𝜑(𝑥̅, 𝛽̅1, 𝛽̅2, ..., 𝛽̅𝑛, 𝑎̅) be the 

formula isolating the principal type 𝑝′(𝑥̅): = 𝑡𝑝(𝛽̅/𝛽̅1, 𝛽̅2, ..., 𝛽̅𝑛, 𝑎̅). Since 𝑝(𝑥) ⊆
𝑝′(𝑥), 𝜑 is 𝑝-𝑛-preserving. And since ( ∧

1≤𝑖≤𝑛
𝑥̅ ≠ 𝛽̅𝑖) ∈ 𝑝′(𝑥), 𝜑 is non-trivial. This 

is a contradiction. 

           □ 

Proposition 5.1.2 [63, P. 722] Let we are given a countable complete theory 𝑇, 

let 𝑝(𝑥̅) ∈ 𝑆(𝐴) be a non-principal type over a finite subset 𝐴 of a model of 𝑇. Then 

the following statements are equivalent: 

1) The type 𝑝 is almost extremely trivial; 

2) For every 𝑛 ≥ 1 , and for every 𝐴 -type 𝑞(𝑦̅1, . . . , 𝑦̅𝑛)  with ⋃
1≤𝑖≤𝑛

𝑝(𝑦̅𝑖) ∪

{ ∧
1≤𝑖≠𝑗≤𝑛

𝑦̅𝑖 = 𝑦̅𝑗} ⊆ 𝑞, there exists no more than finite number of non-equivalent non-

trivial 𝑝-𝑞-preserving 𝐴-formulas, and for every realizations 𝛽̅1, . . . , 𝛽̅𝑛 with  

𝑡𝑝(𝛽̅1, . . . , 𝛽̅𝑛/𝐴) = 𝑞 , and every 𝑝 - 𝑞 -preserving 𝐴 -formula 

𝜑(𝑥̅, 𝑦̅1, 𝑦̅2, . . . , 𝑦̅𝑛 , 𝑎̅), the formula 𝜑(𝑥̅, 𝛽̅1, 𝛽̅2, . . . , 𝛽̅𝑛, 𝑎̅) is algebraic; 

3) For every 𝑛 ≥ 1, and every 𝐴-type 𝑞(𝑦̅1, . . . , 𝑦̅𝑛) with ⋃
1≤𝑖≤𝑛

𝑝(𝑦̅𝑖) ∪ 

{ ∧
1≤𝑖≠𝑗≤𝑛

𝑦̅𝑖 = 𝑦̅𝑗} ⊆ 𝑞 , there exist 𝑚 ≥ 𝑛  and a type 𝑞′(𝑦̅1, . . . , 𝑦̅𝑚) ⊇ 𝑞  such 

that for each 𝛽̅1, ..., 𝛽̅𝑚 ⊨ 𝑞′, 𝑝(𝑀(𝛽̅1, . . . , 𝛽̅𝑚, 𝑎̅)) = {𝛽̅1, . . . , 𝛽̅𝑚}. 
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Proof of Proposition 5.1.2 Further by 𝑎̅ we denote some tuple enumerating the 

set 𝐴. 

1) ⇒ 2) Let 𝑝 be almost extremely trivial. Let 𝜑(𝑥̅, 𝑦̅1, 𝑦̅2, . . . , 𝑦̅𝑛, 𝑎̅) be a non-

trivial 𝑝-𝑞-𝑛-preserving 𝐴-definable formula (𝑛 ≥ 1), where 𝑞(𝑦̅1, . . . , 𝑦̅𝑛) is some 

𝐴 -type with ⋃
1≤𝑖≤𝑛

𝑝(𝑦̅𝑖) ∪ { ∧
1≤𝑖≠𝑗≤𝑛

𝑦̅𝑖 = 𝑦̅𝑗} ⊆ 𝑞 , and 𝛽̅1 , 𝛽̅2 , ..., 𝛽̅𝑛  be some 

realizations of 𝑝 . Since 𝜑(𝑀(𝛽̅1, 𝛽̅2, . . . , 𝛽̅𝑛, 𝑎̅), 𝛽̅1, 𝛽̅2, . . . , 𝛽̅𝑛, 𝑎̅) ⊆
𝑝(𝑀(𝛽̅1, 𝛽̅2, . . . , 𝛽̅𝑛, 𝑎̅)) , and 𝑝  is almost extremely trivial, this set is finite, and 

𝜑(𝑥̅, 𝛽̅1, 𝛽̅2, . . . , 𝛽̅𝑛, 𝑎̅) is an algebraic formula. 

Now towards a contradiction suppose that there exist 𝑛 ≥ 1 , an 𝐴 -type 

𝑞(𝑦̅1, . . . , 𝑦̅𝑛) with ⋃
1≤𝑖≤𝑛

𝑝(𝑦̅𝑖) ∪ { ∧
1≤𝑖≠𝑗≤𝑛

𝑦̅𝑖 = 𝑦̅𝑗} ⊆ 𝑞 , and an infinite family Φ of 

pairwise non-equivalent non-trivial 𝑝-𝑞-preserving 𝐴-definable formulas. Let us take 

any 𝑛 realizations, 𝛽̅1, 𝛽̅2, ..., 𝛽̅𝑛, of 𝑞. For every 𝜑(𝑥̅, 𝑦̅1, 𝑦̅2, . . . , 𝑦̅𝑛, 𝑎̅) ∈ Φ the we 

have 𝜑(𝑀(𝛽̅1, 𝛽̅2, . . . , 𝛽̅𝑛, 𝑎̅), 𝛽̅1, 𝛽̅2, . . . , 𝛽̅𝑛, 𝑎̅) ⊆ 𝑝(𝑀(𝛽̅1, 𝛽̅2, . . . , 𝛽̅𝑛, 𝑎̅)).   

Since the set Φ  is infinite, and all the formulas from Φ  are pairwise non-

equivalent, 𝑝(𝑀(𝛽̅1, 𝛽̅2, . . . , 𝛽̅𝑛, 𝑎̅)) should be infinite, what is impossible because of 

almost extreme triviality of 𝑝. 

2) ⇒ 3) Let 𝑛 and 𝑞 be as in 3), and 𝛽̅1, ..., 𝛽̅𝑛 be realizations of 𝑞. If every 𝑝-

𝑞-preserving formula is trivial, then the desired type 𝑞′ is 𝑞 itself, and the proof is 

done. If not, then let us take an arbitrary element 𝛾̅ ∈ 𝑝(𝑀(𝛽̅1, 𝛽̅2, . . . , 𝛽̅𝑛, 𝑎̅))\
{𝛽̅1, 𝛽̅2, . . . , 𝛽̅𝑛}. Denote by 𝜑(𝑥̅, 𝛽̅1, 𝛽̅2, . . . , 𝛽̅𝑛, 𝑎̅) an isolating formula of the principal 

type 𝑡𝑝(𝛾̅/𝛽̅1, 𝛽̅2, . . . , 𝛽̅𝑛, 𝑎̅) . Since 𝜑(𝑥̅, 𝛽̅1, 𝛽̅2, . . . , 𝛽̅𝑛, 𝑎̅) ⊢ 𝑝 , for every formula 

𝜓(𝑥̅, 𝑎̅) ∈ 𝑝  we have ⊨ ∀𝑥̅(𝜑(𝑥̅, 𝛽̅1, 𝛽̅2, . . . , 𝛽̅𝑛, 𝑎̅) → 𝜓(𝑥̅, 𝑎̅)) . And therefore, the 

formula ∀𝑥̅(𝜑(𝑥̅, 𝑦̅1, 𝑦̅2, . . . , 𝑦̅𝑛, 𝑎̅) → 𝜓(𝑥̅, 𝑎̅))  belongs to the type 

𝑡𝑝(𝛽̅1, 𝛽̅2, . . . , 𝛽̅𝑛, 𝑎̅). Since the last holds for every formula 𝜓(𝑥̅, 𝑎̅) from the type 𝑝, 

we have that the formula 𝜑(𝑥̅, 𝑦̅1, 𝑦̅2, . . . , 𝑦̅𝑛, 𝑎̅) is non-trivial 𝑝-𝑞-preserving. By 2) 

this formula is algebraic, and then the set 𝜑(𝑀(𝛽̅1, 𝛽̅2, . . . , 𝛽̅𝑛, 𝑎̅), 𝛽̅1, 𝛽̅2, . . . , 𝛽̅𝑛, 𝑎̅) ⊆ 

𝑝(𝑀(𝛽̅1, 𝛽̅2, . . . , 𝛽̅𝑛, 𝑎̅))  is finite. This holds for every element 𝛾̅ ∈
𝑝(𝑀(𝛽̅1, 𝛽̅2, . . . , 𝛽̅𝑛, 𝑎̅))\{𝛽̅1, 𝛽̅2, . . . , 𝛽̅𝑛}, and since by 2) there exists only finite number 

of non-equivalent non-trivial 𝑝-𝑞-preserving formulas, the set 𝑝(𝑀(𝛽̅1, 𝛽̅2, . . . , 𝛽̅𝑛, 𝑎̅)) 

is finite, and is equal to {𝛽̅1, 𝛽̅2, . . . , 𝛽̅𝑚}, where 𝑚 > 𝑛, and 𝛽̅𝑖 ⊨ 𝑝 for all 𝑖, 𝑛 < 𝑖 ≤
𝑚. Denote by 𝑞′ the type 𝑡𝑝(𝛽̅1, 𝛽̅2, . . . , 𝛽̅𝑚/𝑎̅), it is easy to see that 𝑞′ is the desired 

type. 

3) ⇒ 1) Now let we have an arbitrary 𝑛 ≥ 1 and realizations 𝛽̅1, 𝛽̅2, . . . , 𝛽̅𝑛 of 

𝑝. Let us denote by 𝑞 the type 𝑡𝑝(𝛽̅1, 𝛽̅2, . . . , 𝛽̅𝑛/𝑎̅). By 3) there are 𝑚 ≥ 𝑛 and a type 

𝑞′(𝑦̅1, . . . , 𝑦̅𝑚)  containing the type 𝑞 , such that 𝑝(𝑀(𝛽′̅1, . . . , 𝛽′̅𝑚, 𝑎̅)) =

{𝛽′̅1, . . . , 𝛽′̅𝑚} for every realizations 𝛽′̅1 , ..., 𝛽′̅𝑚 ⊨ 𝑞′ If we have 𝑚 = 𝑛, then the 

proof for this 𝑛 is finished. Now take arbitrary 𝛽̅𝑛+1, 𝛽̅𝑛+2, ..., and 𝛽̅𝑚, realizations 

of the type 𝑝 for which 𝛽̅𝑖 ≠ 𝛽̅𝑗  for all 1 ≤ 𝑖 ≤ 𝑛  and 𝑛 + 1 ≤ 𝑗 ≤ 𝑚 . Then the 

following holds: 𝑝(𝑀(𝛽̅1, . . . , 𝛽̅𝑛, 𝑎̅)) ⊆ 𝑝(𝑀(𝛽̅1, . . . , 𝛽̅𝑚, 𝑎̅)) = {𝛽̅1, . . . , 𝛽̅𝑚} , 

Therefore 𝑝(𝑀(𝛽̅1, . . . , 𝛽̅𝑛, 𝑎̅)) is finite, and, since the proof is done for arbitrary 𝑛, 𝑝 

is an almost extremely trivial type. 
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           □ 

The following can be obtained as an easy corollary of the proof of Proposition 

5.1.2. 

 

Proposition 5.1.3 [63, P. 723] Let we are given a countable complete theory 𝑇, 

and a non-principal type 𝑝(𝑥̅) ∈ 𝑆(𝐴) over a finite subset 𝐴 of some model of 𝑇. 

Then the next statements are equivalent: 

1) The type 𝑝 is eventually extremely trivial; 

2) For every 𝑛 ≥ 1, there exist 𝑚 (𝑛 ≤ 𝑚), and an 𝐴-type 𝑞(𝑦̅1, . . . , 𝑦̅𝑚) such 

that ⋃
1≤𝑖≤𝑛

𝑝(𝑦̅𝑖) ∪ { ∧
1≤𝑖≠𝑗≤𝑛

𝑦̅𝑖 = 𝑦̅𝑗} ⊆ 𝑞, there exists no more than finite number of 

non-equivalent non-trivial 𝑝-𝑞-preserving 𝐴-formulas, and for every 𝛽̅1, . . . , 𝛽̅𝑚 with 

𝑡𝑝(𝛽̅1, . . . , 𝛽̅𝑚/𝐴) = 𝑞 , for every 𝑝-𝑞 -preserving 𝐴-formula 𝜑(𝑥̅, 𝑦̅1, 𝑦̅2, . . ., 𝑦̅𝑚, 𝑎̅) 

the formula 𝜑(𝑥̅, 𝛽̅1, 𝛽̅2, . . . , 𝛽̅𝑚, 𝑎̅) is algebraic; 

3) For every 𝑛 ≥ 1 , there is such an 𝐴 -type 𝑞(𝑦̅1, . . . , 𝑦̅𝑛)  for which 

⋃
1≤𝑖≤𝑛

𝑝(𝑦̅𝑖) ∪ { ∧
1≤𝑖≠𝑗≤𝑛

𝑦̅𝑖 = 𝑦̅𝑗} ⊆ 𝑞, there exist 𝑚 ≥ 𝑛 and a type 𝑞′(𝑦̅1, . . . , 𝑦̅𝑚) ⊇ 𝑞 

such that for every 𝛽̅1, ..., 𝛽̅𝑚 ⊨ 𝑞′, 𝑝(𝑀(𝛽̅1, . . . , 𝛽̅𝑚, 𝑎̅)) coincides with {𝛽̅1, . . . , 𝛽̅𝑚}. 

 

5.2 Number of countable models 

 

Theorem 5.2.1 [63, P. 723] Let we are given a small complete theory 𝑇. If there 

exists a finite subset 𝐴 of some model of 𝑇 and an eventually extremely trivial non-

isolated type 𝑝(𝑥̅) ∈ 𝑆(𝐴) , then 𝐼(𝑇 ∪ 𝑡𝑝(𝑎̅/∅), 𝜔) ≥ 𝜔 , where 𝑎̅  is a tuple 

enumerating the set 𝐴. 

 

Proof of Theorem 5.2.1 Since the type 𝑝 is eventually extremely trivial, there 

are 𝑚1 ≥ 1 and 𝑚1 realizations 𝛽̅1, 𝛽̅1, ... 𝛽̅𝑚1
 of 𝑝 which are the only realizations 

of 𝑝  in 𝔐1: = 𝔐(𝛽̅1, 𝛽̅2, . . . , 𝛽̅𝑚1
, 𝑎̅), the prime model over realizations. Then we 

have |𝑝(𝑀1)| = 𝑚1. Analogically, for every 𝑖 ≥ 1 there exists a model 𝔐𝑖 (prime 

over a finite set) with |𝑝(𝑀𝑖)| = 𝑚𝑖 ≥ 𝑚𝑖−1 + 1 . Since all those models are not 

isomorphic, there exists at least countable number of models of 𝐼(𝑇 ∪ 𝑡𝑝(𝑎̅/∅)).          

□ 

 

Definition 5.2.1 [64] Let 𝔐  be a linearly ordered structure, 𝐴 ⊆ 𝑀 , 𝑀  be 

|𝐴|+-saturated, and 𝑝 ∈ 𝑆1(𝐴) be a non-algebraic type. 

1) An 𝐴-definable formula 𝜑(𝑥, 𝑦) is 𝒑–stable if there exist 𝛼, 𝛾1, 𝛾2 ∈ 𝑝(𝑀) 

for which 𝛾1 < 𝜑(𝛼, 𝑀) < 𝛾2 and 𝑝(𝑀) ∩ [𝜑(𝛼, 𝑀)\{𝛼}] ≠ ∅. 

2) A 𝑝-stable formula 𝜑(𝑥, 𝑦) is called convex to the right (left) if there exists 

such a realization 𝛼 ⊨ 𝑝 that 𝛼 is the left (or right) endpoint of the set 𝜑(𝛼, 𝑀), 𝛼 ∈
𝜑(𝛼, 𝑀) and 𝑝(𝑀) ∩ 𝜑(𝛼, 𝑀) is a convex set. 

3) A 𝑝-stable convex to the right (to the left left) formula 𝜑(𝑥, 𝑦) is said to be a 

quasi-successor on the type 𝑝  if for every realization 𝛼 ∈ 𝑝(𝑀)  there is 𝛽 ∈
𝜑(𝛼, 𝑀) ∩ 𝑝(𝑀) with 𝑝(𝑀) ∩ [𝜑(𝛽, 𝑀)\𝜑(𝛼, 𝑀)] ≠ ∅. 
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In the section 7 we will return to the notion of a quasi-successor formula, and we 

will prove the following theorem: 

  

Theorem 5.2.2 [65] Let we are given a theory 𝑇 of (an expansion of) linear 

order, let 𝐴 be a finite subset of some model of 𝑇, and 𝑝(𝑥) be a 1-type over 𝐴. Then 

if there exists an 𝐴-definable formula quasi-successor on the type 𝑝, then the theory 

𝑇 has 2ℵ0 nonisomorphic countable models. 

 

Lemma 5.2.1 Suppose that we are given small complete theory 𝑇  of (an 

expansion of) a linear order, which has less than the maximal number of countable 

non-isomorphic models. Also let 𝐴 be a finite subset of some model of the theory 𝑇, 

and 𝑝(𝑥) ∈ 𝑆1(𝐴) be a non-principal 1-type over the set 𝐴. Then for any two elements 

𝛼, 𝛽 realizing the type 𝑝, {𝛼 < 𝑥 < 𝛽} ∪ 𝑝(𝑥) is a consistent set of formulas. 

 

Proof of Lemma 5.2.1 Towards a contradiction let us assume the contrary. Then 

there exists a finite subset Φ ⊂ 𝑝(𝑥) which is inconsistent with the formula {𝛼 < 𝑥 <
𝛽} in 𝑇. Denote 𝜃(𝑥, 𝑎̅): = ∧

𝜑∈Φ
𝜑(𝑥). 

Take a countable saturated model 𝔐 ⊨ 𝑇 with 𝛼, 𝛽 ∈ 𝑀, and 𝐴 ⊂ 𝑀. By our 

assumption we have 𝔐 ⊨ ¬∃𝑥  (𝛼 < 𝑥 < 𝛽 ∧ 𝜃(𝑥, 𝑎̅)). 

Now let us take an elementary monomorphism which maps 𝛼  to 𝛽 . This 

monomorphism can be extended to an automorphism 𝑓 ∈ 𝐴𝑢𝑡𝐴(𝔐). Since 𝛼 < 𝛽, we 

have 𝛽 = 𝑓(𝛼) < 𝑓(𝛽) , and analogically: 𝑓𝑛(𝛽) < 𝑓𝑛+1(𝛽) , for every 𝑛 ∈ ℤ . 

Therefore the set 𝜃(𝑀, 𝑎̅) contains an infinite discretely ordered chain 

On the set 𝜃(𝑀, 𝑎̅) we introduce a binary relation <∗, defined by the following 

formula: 𝑥 <∗ 𝑦: = 𝑥 < 𝑦 ∧ 𝜃(𝑥, 𝑎̅) ∧ 𝜃(𝑦, 𝑎̅) ∧ ¬∃𝑧(𝜃(𝑧, 𝑎̅) ∧ 𝑥 < 𝑧 < 𝑦). 

Consider the following set of formulas:   

 

𝑝(𝑥) ∪ 𝑝(𝑦) ∪ {𝑥 < 𝑦 ∧ ∀𝑧((𝑥 < 𝑧 < 𝑦 ∧ 𝜃(𝑧, 𝑎̅)) → ∃𝑢1∃𝑢2(𝜃(𝑢1, 𝑎̅) ∧
𝜃(𝑢2, 𝑎̅) ∧ 𝑥 < 𝑢1 <∗ 𝑧 <∗ 𝑢2 < 𝑦))} ∪ {∃𝑢1∃𝑢2. . . ∃𝑢𝑛( ∧

1≤𝑖≤𝑛
𝜃(𝑢𝑖 , 𝑎̅) ∧ 𝑥 <

𝑢1 <∗ 𝑢2 <∗. . . <∗ 𝑢𝑛 < 𝑦)}. 

 

This set is consistent, therefore, it can be completed to a 2-type over 𝐴. Fix some 

realization, 𝛾1, 𝛾2, of the obtained type in the model 𝔐. 

Let 𝑟(𝑥)  be a completion of the formula 𝛾1 < 𝑥 < 𝛾2  to a type over 𝐴 ∪
{𝛾1, 𝛾2}. 

Then the formula 𝜑(𝑥, 𝑦, 𝑎̅): = 𝑥 = 𝑦 ∨ 𝑥 <∗ 𝑦  is a quasi-successor on 𝑟. 

Therefore by Theorem 5.2.2 𝑇 ∪ 𝑡𝑝(𝛼, 𝛽, 𝛾1, 𝛾2, 𝑎̅) has the maximal number of 

countable models up to an isomorphism. Since every model of the given theory 𝑇 has 

no more than 𝜔  countable models of 𝑇 ∪ 𝑡𝑝(𝛼, 𝛽, 𝛾1, 𝛾2, 𝑎̅) , then 𝐼(𝑇, 𝜔) = 2ℵ0 , 

which is a contradiction with the statement of the theorem.          

   □ 

Lemma 5.2.2 [63, P. 724] Let 𝔐 be a structure of a countable small complete 



35 

 

theory 𝑇, where 𝐴 and 𝐷 be finite subsets of 𝑀, and 𝐵 is a countable subset of 𝑀. 

For each (𝐴 ∪ 𝐵 ∪ 𝐷)-formula, 𝜑(𝑥, 𝑎̅, 𝑏̅, 𝑑̅), where 𝑎̅ enumerates the set 𝐴, 𝑏̅ ∈ 𝐵, 

and 𝑑̅ ∈ 𝐷, there exists a type 𝑞𝜑 = 𝑞 ∈ 𝑆1(𝐴 ∪ 𝐵 ∪ 𝐷) such that 

1) 𝜑(𝑥, 𝑎̅, 𝑏̅, 𝑑̅) ∈ 𝑞; 

2) The set 𝐵 can be written as union of finite subsets 𝐵𝑛 such that for every 𝑛, 

𝑞/𝐵𝑛 is principal. 

 

Proof of Lemma 5.2.2 Enumerate 𝐵 as {𝑏1, 𝑏2, . . . , 𝑏𝑖 , . . . }. For 𝑖 < 𝜔 denote 

𝑏̅𝑖: = 〈𝑏1, 𝑏2, . . . 𝑏𝑖〉, and let 𝑑′̅ be a tuple enumerating the set 𝐷. Because the theory 𝑇 

is small, there exists a formula 𝜑0(𝑥, 𝑎̅, 𝑏̅𝑛, 𝑑′̅)  that implies 𝜑(𝑥, 𝑎̅, 𝑏̅𝑛, 𝑑̅)  and 

generates a principal type over (𝐴 ∪ {𝑏̅𝑛} ∪ 𝐷). In turn there is a principal subformula 

over (𝐴 ∪ {𝑏̅𝑛+1} ∪ 𝐷) that implies 𝜑0(𝑥, 𝑎̅, 𝑏̅𝑛, 𝑑′̅). Repeating this construction, we 

will get a consistent infinite chain of decreasing principal over parameters formulas 

𝜑𝑖(𝑥, 𝑎̅, 𝑏̅𝑛+𝑖 , 𝑑′̅) : ... ⊆ 𝜑𝑖+1(𝑁, 𝑎̅, 𝑏̅𝑛+𝑖+1, 𝑑′̅) ⊆  𝜑𝑖(𝑁, 𝑎̅, 𝑏̅𝑛+𝑖 , 𝑑′̅) ⊆  ... ⊆

𝜑0(𝑁, 𝑎̅, 𝑏̅𝑛, 𝑑′̅) ⊆ 𝜑(𝑁, 𝑎̅, 𝑏̅𝑛, 𝑑̅), where 𝔑 is an arbitrary model of 𝑇 with (𝐴 ∪ 𝐵 ∪
𝐷) ⊆ 𝑁. Let 𝑏̅𝑛 enumerate 𝐵𝑛, we have defined the desired complete type over (𝐴 ∪
𝐵 ∪ 𝐷). 

           □ 

Theorem 5.2.3 [63, P. 724] Let 𝑇  be a countable complete theory of (an 

expansion of) linear order. If there exists a finite subset 𝐴 of a model 𝔐 ⊨ 𝑇 and 

exists a type 𝑝(𝑥) ∈ 𝑆1(𝐴) which is non-principal and extremely trivial, then the 

theory 𝑇 has 2ℵ0 countable models up to an isomorphism. 

 

Proof of Theorem 5.2.3 Since every theory which is not small has 2ℵ0 countable 

non-isomorphic models, it remains to prove the case, when the theory 𝑇 is small. 

Denote by 𝔑 an ℵ1-saturated elementary extension of 𝔐. 

During the proof, we will construct a countable model 𝔐𝜏 ≺ 𝔑 for every infinite 

sequence of zeros and ones, 𝜏: = 〈𝜏(1), 𝜏(2), . . . , 𝜏(𝑖), . . . 〉𝑖<𝜔, 𝜏(𝑖) ∈ {0,1}, such that 

for every 𝜏1 = 𝜏2, 𝔐𝜏1
≅ 𝔐𝜏2

. 

Let us fix such a sequence of zeros and ones, 𝜏. 

Denote by ℚ𝜏 the following subset of rational numbers: 

 

ℚ𝜏: = ⋃
𝑛≥0

(2𝑛, 2𝑛 + 1) ∪ ⋃
𝑛≥1,
𝜏(𝑛)=0

{2𝑛 −
1

3
, 2𝑛 −

2

3
} ∪ ⋃

𝑛≥1,
𝜏(𝑛)=1

{2𝑛 −
1

5
, 2𝑛 −

2

5
, 2𝑛 −

3

5
}. 

 

Now, pick from the set 𝑝(𝑁) a subset, ordered by the type of ℚ𝜏. If such a subset 

does not exist, then by Lemma 5.2.1 𝑇 has 2ℵ0 countable models, and the theorem is 

proved. Denote this subset by 𝐵: = {𝑏1, 𝑏2, . . . , 𝑏𝑖 , . . . }𝑖<𝜔. Also, for each 𝑛 < 𝜔 let 

𝑏̅𝑛 be the tuple 〈𝑏1, 𝑏2, . . . , 𝑏𝑛〉. For the model 𝔐𝜏 we will have 𝑝(𝔐𝜏) = 𝐵. 

Using the Tarski-Vaught test we will show that the set 𝑀𝜏 is a universe of some 

elementary substructure of 𝔑. On each step of the construction we will be fixing a set 

of parameters and promising to realize each satisfiable 1-formula over it. We must keep 
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coming back to the same set of parameters and deal with another formula. So the 

different sets of parameters are being attacked in parallel. We will choose the 

realizations in a certain way, which, together with extreme triviality of the type 𝑝, will 

imply that the only realizations of this type will be the elements of the set 𝐵. 

Step 1. Let us denote by Φ1  the set of all 𝐴 -definable 1-formulas, Φ1: =
{𝜑𝑖

1(𝑥, 𝑎̅)|𝑖 < 𝜔}, where 𝑎̅ is a tuple enumerating the set 𝐴. Choose the least 𝑖 such 

that 𝔑 ⊨ ∃𝑥𝜑𝑖
1(𝑥, 𝑎̅). To satisfy the Tarski-Vaught property, we must find a witness 

for 𝜑𝑖
1(𝑥, 𝑎̅). Since the sets 𝐴, 𝐵 and the formula 𝜑𝑖

1 are as in Lemma5.2.2 (consider 

the set 𝐷 to be empty), there exists an 𝐴 ∪ 𝐵-type 𝑞𝜑𝑖
1 satisfying conditions 1) and 2) 

from the lemma. And since the model 𝔑 is ℵ1-saturated, this type is realized in 𝔑 by 

some element, denote it by 𝑑1. Therefore the element 𝑑1 is principal over the set 𝐴. 

Step 2. Let us take smallest index 𝑗  for which 𝜑𝑗
1(𝑥, 𝑎̅) ∈ Φ1  was not taken 

before and the following holds: 𝔑 ⊨ ∃𝑥𝜑𝑗
1(𝑥, 𝑎̅) . We find a special witness for 

𝜑𝑗
1(𝑥, 𝑎̅), which will satisfy the Tarski-Vaught condition but not realize 𝑝. By applying 

the Lemma 5.2.2 to the sets 𝐴 , 𝐵  and {𝑑1}, and 𝜑𝑗
1(𝑥, 𝑎̅), we can choose 𝑑2 , a 

realization of 𝑞𝜑𝑗
1. The element 𝑑2 can be chosen to be principal over the set 𝐴𝑏1𝑑1. 

Now let us take the element 𝑏1  and construct the set of (𝐴 ∪ {𝑏1} ∪ {𝑑1})-

definable unary formulas, which we denote by Φ2: = {𝜑𝑖
2(𝑥, 𝑎̅, 𝑏1, 𝑑1)|𝑖 < 𝜔}. Now 

choose the least index 𝑖  for which 𝜑𝑖
2(𝑥, 𝑎̅, 𝑏1, 𝑑1)  from the family Φ2  was not 

chosen before, and 𝔑 ⊨ ∃𝑥𝜑𝑖
2(𝑥, 𝑎̅, 𝑏1, 𝑑1), and find a realization 𝑑3 existing by the 

Lemma 5.2.2 applied to the sets 𝐴, 𝐵, {𝑑1, 𝑑2}, and the formula 𝜑𝑖
2. 

At the stage 𝑘 the next sets would be chosen:   

– Nested sets 𝐷1 = {𝑑1} , 𝐷2 = {𝑑1, 𝑑2, 𝑑3} , 𝐷3 = {𝑑1, 𝑑2, . . . , 𝑑6} , ..., 𝐷𝑘 =
{𝑑1, 𝑑2, . . . , 𝑑(𝑘+1)𝑘

2

}, where 𝐷𝑖 was constructed on step 𝑖 through adding to 𝐷𝑖−1 of 𝑖 

new realizations. For some 𝑖  and 𝑗  we might have 𝑑𝑖 = 𝑑𝑗 , where 1 ≤ 𝑖 < 𝑗 ≤
(𝑘+1)𝑘

2
.  

– The family of all 𝐴-definable 1-formulas Φ1, and for every 𝑚, 2 ≤ 𝑚 ≤ 𝑘, a 

family of (𝐴 ∪ {𝑏̅𝑚−1} ∪ 𝐷𝑚−1)-definable 1-formulas, Φ𝑚.  

Further we will use the usual notation 𝑑̅𝑖 = 〈𝑑1, 𝑑2, . . . , 𝑑𝑖〉, 𝑖 < 𝜔. 

Step 𝑘 + 1. Firstly, we realize one formula from each of the families we defined 

earlier. To do this, for each 𝑚 , 1 ≤ 𝑚 ≤ 𝑘 , find smallest number 𝑖𝑚  for which 

formula 𝜑𝑖𝑚

𝑚 ∈ Φ𝑚 were not taken previously, and the definable set in𝔑 of which is 

not empty. Apply Lemma 5.2.2 to the sets 𝐴, 𝐵 and {𝑑̅(𝑘+1)𝑘

2
+𝑚−1

}, and the formula 

𝜑𝑖𝑚

𝑚 , to find realization 𝑑(𝑘+1)𝑘

2
+𝑚

 of the type 𝑞𝜑𝑖𝑚
𝑚 . 

Now let Φ𝑘+1 be the set of all (𝐴 ∪ {𝑏̅𝑘} ∪ 𝐷𝑘)-definable 1-formulas, find the 

smallest index 𝑖 such that 𝔑 ⊨ ∃𝑥𝜑𝑖
𝑘+1(𝑥, 𝑎̅, 𝑏̅𝑘 , 𝑑̅(𝑘+2)(𝑘+1)

2

). And choose 𝑑(𝑘+1)𝑘

2
+𝑘+1

 

as before, as a realization of a type 𝑞𝜑𝑖
𝑘+1, which exists by Lemma 5.2.2 applied to the 

sets 𝐴 , 𝐵 , {𝑑̅(𝑘+1)𝑘

2
+𝑘

} , and formula 𝜑𝑖
𝑘+1 . Let 𝐷𝑘+1  be the set 



37 

 

{𝑑1, 𝑑2, . . . , 𝑑(𝑘+1)𝑘

2
+𝑘+1

}. We can arrange that each new 𝑑𝑖 is principal over 𝐴𝑏̅𝑛 and 

the 𝑑𝑗’s for 𝑗 < 𝑖. 

Denote 𝑀𝜏: = 𝐴 ∪ 𝐵 ∪ ⋃
𝑖<𝜔

𝐷𝑖. 

Suppose that there exists a realization 𝛿 ∈ 𝑝(𝑁)\𝐵 . Since the type 𝑝  is not 

principal, 𝛿 ∈ 𝐴, then for some 𝑘 < 𝜔, 𝛿 = 𝑑𝑘 . For every 𝑛 < 𝜔 the type 𝑡𝑝(𝑑𝑘/
𝑎̅𝑏̅𝑛) is non-principal. Otherwise, it should be realized in 𝔐(𝑎̅, 𝑏̅𝑛) by some element 

not from 𝑏̅𝑛, which is impossible since the type 𝑝 is extremely trivial. Also, since for 

every 𝑖 < 𝜔,we choose 𝑑𝑖 to satisfy the conditions of Lemma 5.2.2, we have that the 

type 𝑡𝑝(𝑑𝑖/𝑎̅, 𝑏̅𝑛 , 𝑑̅𝑖−1)  is principal. From the last statement it easily follows by 

induction that the type 𝑡𝑝(𝑑̅𝑘/𝑎̅𝑏̅𝑛)  is principal, and therefore 𝑡𝑝(𝑑𝑘/𝑎̅𝑏̅𝑛)  is a 

principal type as well. This is a contradiction, and we have 𝑝(𝔐𝜏) = 𝐵. 

The obtained structure 𝔐𝜏 is an elementary substructure of the structure 𝔑. This 

is true because of the Tarski-Vaught test. And have that 𝐼(𝑇 ∪ 𝑡𝑝(𝑎̅), 𝜔) = 2ℵ0 since 

the number of different sequences 𝜏 is equal to the cardinality of the continuum. The 

theory 𝑇, being small, has at most countably many distinct complete extensions by 

realizing an 𝑛-type, 𝑇 ∪ 𝑡𝑝(𝑎̅); consequently, 𝐼(𝑇, 𝜔) = 2ℵ0. 

           □ 

By this we have proved the main theorem of the section, which guarantees that a 

countable theory which has an extremely trivial 1-type over a finite subset, has the 

maximal number of countable models up to an isomorphism. 
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6 MAXIMALITY OF NUMBER OF COUNTABLE MODELS FOR 

PARTIALLY ORDERED THEORIES  

 

Consider a theory 𝑇 be countable and complete, and let 𝑐̅ to be some element of 

some structure of 𝑇. 

We generalize the usual concept of a partial order onto a definable order on tuples 

of elements.  

Definition 6.1 [69] We call a formula 𝜓(𝑥̅, 𝑦̅, 𝑐̅)  with 𝑙𝑛(𝑥̅) = 𝑙𝑛(𝑦̅)  to be 

defining a partial order in a theory 𝑇, if for any structure 𝔐 ⊨ 𝑇 such that 𝑐̅ ∈ 𝑀 

the following holds: 

 

𝔐 ⊨ ∀𝑥̅∀𝑦̅(𝜓(𝑥̅, 𝑦̅, 𝑐̅) → 𝑥̅ ≠ 𝑦̅); 

𝔐 ⊨ ∀𝑥̅∀𝑦̅¬(𝜓(𝑥̅, 𝑦̅, 𝑐̅) ∧ 𝜓(𝑦̅, 𝑥̅, 𝑐̅)); 

𝔐 ⊨ ∀𝑥̅∀𝑦̅∀𝑧̅((𝜓(𝑥̅, 𝑦̅, 𝑐̅) ∧ 𝜓(𝑦̅, 𝑧̅, 𝑐̅)) → 𝜓(𝑥̅, 𝑧̅, 𝑐̅)).  

 

Definition 6.2 [69, P. 6] Consider 𝜓(𝑥̅, 𝑦̅, 𝑐̅) to be a formula which determines a 

partial order on 𝑇, by a 𝝍-chain on the theory 𝑇 we mean a subset of some structure 

𝔐 ⊨ 𝑇 with 𝔐 ⊨ ∃𝑥̅∃𝑦̅  𝜓(𝑥̅, 𝑦̅, 𝑐̅), which is a linearly ordered by 𝜓. and is convex 

(by 𝜓) in the model 𝔐. 

 

Let we have a formula 𝜑(𝑥̅), it may have parameters, by a convex-𝝍(𝒙̅, 𝒚̅, 𝒄̅)-

closure of a formula 𝜑 we mean the next formula  𝜑𝜓(𝑥̅,𝑦̅,𝑐)̅
𝑐 (𝑥̅): = ∃𝑦̅1, ∃𝑦̅2(𝜑(𝑦̅1) ∧

𝜑(𝑦̅2) ∧ ((𝜓(𝑦̅1, 𝑥̅, 𝑐̅) ∨ 𝑥̅ = 𝑦̅1) ∧ (𝜓(𝑥̅, 𝑦̅1, 𝑐̅) ∨ 𝑥̅ = 𝑦̅2))).   

By convex- 𝝍(𝒙̅, 𝒚̅, 𝒄̅) -closure of a type 𝑝(𝑥̅) , we understand the type 

𝑝𝜓(𝑥̅,𝑦̅,𝑐)̅
𝑐 (𝑥̅): = {𝜑𝜓(𝑥̅,𝑦̅,𝑐)̅

𝑐 (𝑥̅) |𝜑(𝑥̅) ∈ 𝑝}. 

 

Theorem 6.1 [69, P. 6] Let we are given be a complete countable theory 𝑇, and 

let 𝔐 be a countable structure of the theory 𝑇. If there exists a tuple 𝑐̅ ∈ 𝑀, and a 

sentence 𝜓(𝑥̅, 𝑦̅, 𝑐̅), 𝑙𝑛(𝑥̅) = 𝑙𝑛(𝑦̅) = 𝑙, which defines partial order on the theory 𝑇 

and such that for every natural 𝑛 ∈ ℕ there is a finite discrete 𝜓-chain of length equal 

to or more than 𝑛, then 𝐼(𝑇, 𝜔) = 2𝜔. 

 

 Proof of Theorem 6.1 If the given theory 𝑇 is not a small theory, then by the 

theorem 2.3.2 it has the maximal number of countable structures up to an isomorphism, 

and the theorem is proved. Consequently, later we can consider 𝑇 to be a small theory. 

Firstly note that by the theorem of compactness there exists a discrete 𝜓-chain of 

an infinite length. 

For simplicity let us denote the following: 

𝑥̅ <∗ 𝑦̅: = 𝜓(𝑥̅, 𝑦̅, 𝑐̅); 

𝑥̅ ≤∗ 𝑦̅: = 𝑥̅ <∗ 𝑦̅ ∨ 𝑥̅ = 𝑦̅; 

𝑠(𝑥̅, 𝑦̅, 𝑐̅): = 𝑥̅ <∗ 𝑦̅ ∧ ¬∃𝑧̅(𝑥̅ <∗ 𝑧̅ ∧ 𝑧̅ <∗ 𝑦̅); 

𝑠(0)(𝑥̅, 𝑦̅): = 𝑥̅ = 𝑦̅; 
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𝑠(𝑛)(𝑥̅, 𝑦̅): = ∃𝑧1̅. . . ∃𝑧𝑛̅(𝑧1̅ = 𝑥̅ ∧ 𝑧𝑛̅ = 𝑦̅ ∧
𝑛−1

𝑖=1
𝑠̅(𝑧𝑖 , 𝑧𝑖̅+1)); 

𝑠(−𝑛)(𝑥̅, 𝑦̅): = ∃𝑧1̅. . . ∃𝑧𝑛̅(𝑧1̅ = 𝑥̅ ∧ 𝑧𝑛̅ = 𝑦̅ ∧
𝑛−1

𝑖=1
𝑠̅(𝑧𝑖+1, 𝑧𝑖̅)), where 𝑛 ∈ ℕ\{0}; 

𝜑(𝑥̅)+: = ∃𝑦̅(𝜓(𝑦̅) ∧ 𝑦̅ <∗ 𝑥̅); 

𝜑(𝑥̅)−: = ∃𝑦̅(𝜓(𝑦̅) ∧ 𝑥̅ <∗ 𝑦̅). 

For a given natural number we can construct a formula which will determine a 

discrete chain of length which is more or equal to that number, that is: 𝜑𝑛(𝑥̅, 𝑦̅, 𝑐̅): =

∃𝑧1̅. . . ∃𝑧𝑛̅(𝑧1̅ = 𝑥̅ ∧ 𝑧𝑛̅ = 𝑦̅ ⋀
𝑛−1

𝑖=1
𝑧𝑖̅ <∗ 𝑧𝑖̅+1 ∧ ∀𝑧̅(𝑥̅ ≤∗ 𝑧̅ ∧ 𝑧̅ ≤∗ 𝑦̅ → ∃𝑡1̅∃𝑡2̅(𝑠(𝑡1̅, 𝑧̅) ∧

𝑠(𝑧̅, 𝑡2̅)))). 

Denote the type 𝑝(𝑥̅, 𝑦̅, 𝑐̅): = {𝜑𝑛(𝑥̅, 𝑦̅, 𝑐̅) | 𝑛 < 𝜔} . Let us take the tuple 

(𝑎̅, 𝑏̅) ⊨ 𝑝  and consider the next formula: 𝛾𝑛(𝑥̅, 𝑎̅, 𝑏̅, 𝑐̅): =

∃𝑥̅1. . . ∃𝑥̅𝑛∃𝑦̅1. . . ∃𝑦̅𝑛(𝑥̅1 = 𝑎̅ ∧ 𝑦̅1 = 𝑏̅ ⋀
𝑛−1

𝑖=1
(𝑠(𝑥̅𝑖 , 𝑥̅𝑖+1) ∧ 𝑠(𝑦̅𝑖+1,𝑦̅1)) ∧ 𝑥̅𝑛 <∗ 𝑥̅ ∧

𝑥̅ <∗ 𝑦̅1) which is a formula meaning that 𝑥̅ is located between 𝑎̅ and 𝑏̅, but it is not 

an 𝑖-th <∗-successor (or predecessor) of the tuple 𝑎̅ (𝑏̅) for every 𝑖 ≤ 𝑛. 

Denote 𝑞(𝑥̅, 𝑎̅, 𝑏̅, 𝑐̅): = {𝛾𝑛(𝑥̅, 𝑎̅, 𝑏̅, 𝑐̅) | 𝑛 < 𝜔}, this is not necessary a complete 

type, but a finitely consistent type over {𝑎̅, 𝑏̅, 𝑐̅}. Take a countable saturated extension 

𝔑 of the structure 𝔐(𝑎̅, 𝑏̅, 𝑐̅), the prime over the set {𝑎̅, 𝑏̅, 𝑐̅}. 

For 𝛼̅and 𝛽̅ realizations of 𝑞 in 𝔑let, 𝑉𝑞,𝔑(𝛽̅): = {𝛾 ∈ 𝑞(𝑁) | ∃𝑛 ∈ ℤ  𝔑 ⊨

𝑠(𝑛)(𝛽̅, 𝛾̅)} be the elements from realizing 𝑞 in 𝔑 that can be ‘reached’ from 𝛽̅ in 𝑠-

steps, and the same for 𝛼̅. Let us denote 

 

(𝑉𝑞,𝔑(𝛼̅), 𝑉𝑞,𝔑(𝛽̅)): = {𝛾̅ ∈ 𝑞(𝑁) | 𝑉𝑞,𝔑(𝛼̅) < 𝛾 < 𝑉𝑞,𝔑(𝛽̅)}. 
 

And denote 𝑎̃: = (𝑎̅, 𝑏̅, 𝑐̅). 

 

Lemma 6.1 [69, P. 7] For every 𝛾̅1, 𝛾̅2 ∈ (𝑉𝑝,𝔑(𝑎̅), 𝑉𝑝,𝔑(𝑏̅)) = 𝑞(𝑁) , 

𝑡𝑝≤∗
𝑐 (𝛾̅1|{𝑎̅, 𝑏̅, 𝑐̅}) = 𝑡𝑝≤∗

𝑐 (𝛾̅2|{𝑎̅, 𝑏̅, 𝑐̅}).  

  

Proof of Lemma 6.1 

Towards a contradiction let there are 𝛾̅1, 𝛾̅2 ∈ (𝑉𝑝,𝔑(𝑎̅), 𝑉𝑝,𝔑(𝑏̅)) , and an 𝑎̃ -

definable sentence 𝐻  for which 𝛾̅1 ∈ 𝐻(𝑁, 𝑎̃) <∗ 𝛾̅2 . To have a convex set let us 

replace 𝐻 by (𝐻(𝑁, 𝑎̃)+)− if necessary. 

Given 𝑘, 𝑛1, 𝑛2 < 𝜔 for which 𝑛1 + 𝑛2 < 𝑘 consider 

 

𝑆𝑘,𝑛1,𝑛2
(𝐻)(𝑥̅, 𝑦̅, 𝑎̃): = ((𝑥̅ <∗ 𝑦̅ ∧ ¬𝑠𝑘(𝑥̅, 𝑦̅)) → ∃𝑧1̅, ∃𝑧2̅(𝑥̅ < 𝑧1̅ <∗ 𝑧2̅ <∗ 𝑦̅ ∧

¬𝑠𝑛1(𝑥̅, 𝑧1̅) ∧ ¬𝑠𝑛2(𝑧2̅, 𝑦̅) ∧ 𝐻(𝑧1̅, 𝑥̅, 𝑦̅, 𝑐̅) ∧ ¬𝐻(𝑧2̅, 𝑥̅, 𝑦̅, 𝑐̅) ∧ 𝑠(𝑧1̅, 𝑧2̅, 𝑎̃))). 

 

By the theorem of compactness, we can prove the following: 

 

Claim 6.1 [69, P. 8] There are 2 non-decreasing functions 𝑠1, 𝑠2: 𝜔 → 𝜔 which 
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are not constant, and for which there exists 𝑚 < 𝜔, such that for all 𝑘 > 𝑚, and all 

𝛼′̅, 𝛽′̅ ∈ (𝑎̅, 𝑏̅)𝑝(𝑁), the following holds: 𝔑 ⊨ 𝑆𝑘,𝑠1(𝑘),𝑠2(𝑘)(𝐻)(𝛼′̅, 𝛽′̅). 

  

Take 𝐻∅(𝑥̅, 𝑎̃): = ¬𝐻(𝑥̅, 𝑎̃) ∧ ∃𝑦̅(𝑠(𝑦̅, 𝑥̅) ∧ 𝐻(𝑦̅, 𝑎̃)).  Then 𝐻∅(𝑁, 𝑎̃) ∩

𝑞(𝑁) = ∅  and 𝐻∅(𝑁, 𝑎̃) ∩ 𝑞(𝑁) = {𝛾∅}  for an element 𝛾∅ ∈ (𝑉𝑞,𝔑(𝑎̅), 𝑉𝑞,𝔑(𝑏̅)) . 

Then take 

  

𝐺0(𝑥̅, 𝑎̃): = ∃𝑧̅(𝐻(𝑥̅, 𝑎̅, 𝑧̅, 𝑐̅) ∧ 𝐻∅(𝑧̅, 𝑎̃)); 

𝐺1(𝑥̅, 𝑎̃): = ∃𝑧̅(𝐻(𝑥̅, 𝑧̅, 𝑏̅, 𝑐̅) ∧ 𝐻∅(𝑧̅, 𝑎̃)). 

 

The sets are located in the following way: 𝐺0(𝑁, 𝑎̃) < 𝑉𝑞,𝔑(𝛾̅∅),  𝑉𝑝,𝒩(𝑎̅) <

𝐺0(𝑁, 𝑎̃)+ and 𝑉𝑞,𝔑(𝛾̅∅) < 𝐺1(𝑁, 𝑎̃)+, 𝐺1(𝑁, 𝑎̃) < 𝑉𝑝,𝔑(𝑏̅). We will also use the next 

notations:  

  

𝐻0(𝑥̅): = ¬𝐺0(𝑥̅, 𝑎̃) ∧ ∃𝑦(𝐺0(𝑦̅, 𝑎̃) ∧ 𝑠(𝑦̅, 𝑥̅)); 

𝐻1(𝑥̅): = ¬𝐺1(𝑥̅, 𝑎̃) ∧ ∃𝑦(𝐺1(𝑦̅, 𝑎̃) ∧ 𝑠(𝑦̅, 𝑥̅)); 

 

𝐺00(𝑥̅, 𝑎̃): = ∃𝑧̅(𝐻(𝑥̅, 𝑎̅, 𝑧̅, 𝑐̅) ∧ 𝐻0(𝑧̅, 𝑎̃)); 
𝐺01(𝑥̅, 𝑎̃): = ∃𝑧1̅, 𝑧2̅(𝐻(𝑥̅, 𝑧1̅, 𝑧2̅, 𝑐̅) ∧ 𝐻0(𝑧1̅, 𝑎̃) ∧ 𝐻∅(𝑧2̅, 𝑎̃)); 

𝐺10(𝑥̅, 𝑎̃): = ∃𝑧1̅, 𝑧2̅(𝐻(𝑥̅, 𝑧1̅, 𝑧2̅) ∧ 𝐻∅(𝑧1̅, 𝑎̃) ∧ 𝐻1(𝑧2̅, 𝑎̃)); 

𝐺11(𝑥̅, 𝑎̃): = ∃𝑧̅(𝐻(𝑥̅, 𝑧̅, 𝑏̅, 𝑐̅) ∧ 𝐻1(𝑧̅, 𝑎̃)). 
   

By using this construction 𝜔 times we get a countable number of 𝑎̃-definable 

formulas, 𝐻𝛿 , 𝛿 ∈ 2<𝜔 , with the property that for every sequence 𝜏 ∈ 2𝜔 , 𝜏(𝑛) ∈
{0,1} there exists an 𝑛-type 𝑞𝜏 ∈ 𝑆𝑛({𝑎̃}), extending the next set of 𝑎̃-definable 𝑛-

formulas: Γ𝜏(𝑥): = {𝑥 < 𝐻𝜏¸𝑛(𝑁, 𝑎̃) | 𝜏(𝑛 + 1) = 0} ∪ {𝐻𝜏¸𝑛(𝑥, 𝑎̃) | 𝜏(𝑛 + 1) =

1}.   

What is a contradiction to us assuming that the theory 𝑇 is a small theory. 

           □ Lemma 6.1 

Lemma 6.1 can be used to imply the following. 

 

Lemma 6.2 [69, P. 8] For all 𝛿𝑛: = 〈𝛿1̅, … , 𝛿𝑛̅〉, 𝛿𝑖̅ ∈ (𝑉𝑝,𝔑(𝑎̅), 𝑉𝑝,𝔑(𝑏̅)), 1 ≤

𝑖 ≤ 𝑛 ; with 𝑉𝑞,𝔑(𝛿𝑖̅) < 𝑉𝑞,𝔑(𝛿𝑖̅+1)  (1 ≤ 𝑖 ≤ (𝑛 − 1)) , and 𝛾̅ ∈ 𝑁  such that 

𝑡𝑝(𝛾̅|{𝑎̅𝑏̅, 𝑐̅} ∪ 𝛿𝑛) is isolated we have that: ∀𝛾̅1, 𝛾̅2 ∈ (𝑉𝑝,𝛬,(𝛿𝑖̅), 𝑉𝑝,𝛬(𝛿𝑖̅+1)), 

   

𝑡𝑝𝑐(𝛾1|𝐴 ∪ 𝛿𝑛̅ ∪ 𝛾̅ ∪ {𝛿̅, 𝛼̅}) = 𝑡𝑝𝑐(𝛾2|𝐴 ∪ 𝛿𝑛̅ ∪ 𝛾̅ ∪ {𝛿̅, 𝛼̅}). 

  

Take 𝔑′ to be an ℵ1-saturated extension of 𝔐 ∪ {𝑎̃}. 

Having an arbitrary sequence 𝜏: = 〈𝜏(1), 𝜏(2), . . . , 𝜏(𝑖), . . . 〉𝑖<𝜔  of 0’s and 1’s, 

we will apply the a similar construction to the one given in [62, P. 46] to obtain a 

countable substructure 𝔐𝜏 ≺ 𝔑′, such that for every different sequences 𝜏1 = 𝜏2 , 

𝔐𝜏1
≅ 𝔐𝜏2

. Let us fix such a sequence 𝜏 until the end of the proof. 
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Take 𝐵′𝜏 = {𝑒̅𝑟
𝑖  | 𝑟 ∈ ℚ, 𝑖 ∈ ℕ} ∪ {𝑓𝑛̅

𝑖  | 𝑖 ∈ ℕ, 𝑛 ∈ {0,1},  and 𝜏(𝑖) = 0} ∪
{𝑓𝑛̅

𝑖  | 𝑖 ∈ ℕ, 𝑛 ∈ {0,1,2}, and 𝜏(𝑖) = 1} ⊆ 𝑞(𝑁′)  with 𝑉𝑞,𝔑′(𝑒̅𝑟1

𝑖 ) < 𝑉𝑞,𝔑′(𝑒̅𝑟2

𝑖 ) <

𝑉𝑞,𝔑′(𝑓𝑛̅1

𝑖 ) < 𝑉𝑞,𝔑′(𝑓𝑛̅2

𝑖 ) < 𝑉𝑞,𝔑′(𝑒̅𝑟
𝑖+1), where 𝑖 ∈ ℕ, 𝑟1 < 𝑟2 ∈ ℚ, 𝑟 ∈ 𝑄, 𝑛1 < 𝑛2 ∈

{0,1,2}. The set 𝐵𝜏: = 𝐵′ ⋃
𝑏̅∈𝐵′

𝑉𝑞,𝔑′(𝑏̅) is countable, so we can enumerate it, 𝐵𝜏 =

{𝑏̅𝑖  | 𝑖 < 𝜔} . We will use the notation 𝑏̃𝑛: = 〈𝑏̅1, 𝑏̅2, . . . , 𝑏̅𝑛〉 , 𝑛 < 𝜔 . For the 

constructed model 𝔐𝜏 it will hold that 𝑞(𝔐𝜏) = 𝐵𝜏. 

Construction of the model 𝔐𝜏. 

Step 1. By Λ1 we will consider the set of all 𝑎̃-definable formulas with one free 

variable, Λ1: = {𝜓𝑖
1(𝑥, 𝑎̃) | 𝑖 < 𝜔}. Take 𝜓𝑖

1(𝑥, 𝑎̃) ∈ Λ1 with the least 𝑖 for which 

𝔑′ ⊨ ∃𝑥𝜓𝑖
1(𝑥, 𝑎̃). In respect that 𝑇  is a small theory, there is an isolated over 𝑎̃ 

formula 𝜓𝑖,1
1 (𝑥, 𝑎̃) ⊆ 𝜓𝑖

1(𝑥, 𝑎̃) (that is, a subformula), which as well has an isolated 

subformula over the set {𝑎̃, 𝑏̅1}. If we repeat this construction, we will get a finitely 

satisfiable infinite decreasing sequence of nested formulas 𝜓𝑖,𝑗
1 (𝑥, 𝑎̃, 𝑏̃𝑗) which are 

isolated over parameters: ...⊆ 𝜓𝑖,𝑛+1
1 (𝑁′, 𝑎̃, 𝑏̃𝑛+1) ⊆ 𝜓𝑖,𝑛

1 (𝑁′, 𝑎̃, 𝑏̃𝑛) ⊆. .. ⊆ 𝜓𝑖
1(𝑁′, 𝑎̃). 

Let us denote by 𝑑1  realization of the constructed chain. Such a realization exists 

because the structure 𝔑′ is ℵ1-saturated. 

Step 2. Let us take a new formula 𝜓𝑖
1(𝑥, 𝑎̃) ∈ Λ1 with the least index 𝑖 and for 

which there is a witness in 𝔑′,  𝔑′ ⊨ ∃𝑥𝜓𝑖
1(𝑥, 𝑎̃) , and find a realization 𝑑2 

analogically, as the realization 𝑑1. 

Now let us take 𝑏1  and construct the set of (𝑎̃ ∪ {𝑑̅1} ∪ {𝑏̅1})-definable one-

formulas Λ2: = {𝜓𝑖
2(𝑥, 𝑎̃, 𝑑1, 𝑏̅1)|𝑖 < 𝜔} . Find the formula 𝜓𝑖

2(𝑥, 𝑎̃, 𝑑1, 𝑏̅1) ∈ Λ2 

which has not been taken previously and has the least index satisfying 𝔑′ ⊨

∃𝑥𝜓𝑖
2(𝑥, 𝑎̃, 𝑏̃1, 𝑑1), and find 𝑑3 (which exists because 𝔑′ is ℵ1-saturated) of the next 

infinite chain of isolated over parameters nested formulas 𝜓𝑖,𝑗
2 (𝑥, 𝑎̃, 𝑑1, 𝑏̃𝑗) : ... ⊆

𝜓𝑖,𝑛+1
2 (𝑥, 𝑎̃, 𝑑1, 𝑏̃𝑛+1) ⊆ 𝜓𝑖,𝑛

2 (𝑥, 𝑎̃, 𝑑1, 𝑏̃𝑛) ⊆. .. ⊆ 𝜓𝑖
2(𝑥, 𝑎̃, 𝑑1, 𝑏̅1). 

At the end of stage 𝑘 we will have the next sets: for each 𝑚, 1 ≤ 𝑚 ≤ 𝑘, the 

sets 𝐷𝑚: = {𝑑1, 𝑑2, . . . , 𝑑(𝑚+1)𝑚

2

}  (we can have 𝑑𝑖 = 𝑑𝑗  for some indexes 𝑖  and 𝑗 

with 1 ≤ 𝑖 < 𝑗 ≤
(𝑚+1)𝑚

2
), the set of 𝑎̃-definable one-formulas Λ1, and for each 𝑚, 

2 ≤ 𝑚 ≤ 𝑘 , the sets Λ𝑚  of one-formulas definable over the set ({𝑎̃} ∪ 𝐷𝑚−1 ∪

𝑏̃𝑚−1). 

Step 𝑘 + 1. For every 𝑚, 1 ≤ 𝑚 ≤ 𝑘, take a formula 𝜓𝑖𝑚

𝑚 ∈ Λ𝑚 of a smallest 

index, which was not considered before, and the set of realizations of which in 𝔑′ is 

not empty. And choose 𝑑(𝑘+1)𝑘

2
+𝑚

 realizing descending chains of isolated sub-formulas 

of formulas 𝜓𝑖𝑚

𝑚 . By Λ𝑘+1 denote the set of all one-formulas which are definable over 

({𝑎̃} ∪ 𝐷𝑘 ∪ 𝑏̃𝑘).  Next let us chose 𝑑(𝑘+1)𝑘

2
+𝑘+1

 analogically to the previous 

construction. Denote by 𝐷𝑘+1  the set {𝑑1, 𝑑2, . . . , 𝑑(𝑘+1)𝑘

2
+𝑘+1

} . And denote 𝑀𝜏: =

{𝑎̃} ∪ 𝐵𝜏 ∪ ⋃
𝑖<𝜔

𝐷𝑖. 

By the statement of the theorem, for given an arbitrary 𝛿̅ ∈ 𝑞(𝑁′)\𝐵 and any 
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tuple 𝑏̃𝑛  we have that the type 𝑡𝑝(𝛿/𝑎̃, 𝑏̃𝑛) is non-principal. By the way we have 

chosen 𝑑̅𝑖: = 〈𝑑1, 𝑑2, . . . , 𝑑𝑖〉𝑖<𝜔, the type 𝑡𝑝(𝑑̅𝑖/𝑎̃, 𝑏̃𝑛, 𝑑̅𝑖−1) is principal, and 𝑡𝑝(𝑑̅𝑖/
𝑎̃, 𝑏̃𝑛) is as well. Consequently, Lemma 6.2 proves that the type 𝑡𝑝(𝛿̅/𝑎̃, 𝑏̃𝑛, 𝑑̅𝑖) is not 

principal, and therefore, that 𝛿̅ is not realized in 𝔐𝜏. 

The Tarski-Vaught test shows that the structure 𝔐𝜏 that we have obtained is an 

elementary substructure of the considered structure 𝔑′. 
Let us prove that for every two nonequal sequences of 0’s and q’s 𝜏1 and 𝜏2 the 

structures 𝔐𝜏1
 and 𝔐𝜏2

 are not isomorphic. To obtain a contradiction let us consider 

that 𝔐𝜏1
≅
𝜇

𝔐𝜏2
. Now take the least index 𝑖  for which 𝜏1(𝑖) ≠ 𝜏2(𝑖) . For 

convenience we suppose that 𝑖 = 1 and let 0 = 𝜏1(1) ≠ 𝜏2(1) = 1. We will use the 

above mentioned construction of 𝐵𝜏 and 𝐵′𝜏. If we are having an isomorphism, the set 

of realizations of a type is mapped into the set of realizations of the same type. Also in 

respect that the function 𝜇 is an isomorphism, for all realizations 𝑐1̅, 𝑐2̅ ∈ 𝑞(𝑀𝜏1
), we 

have that 𝔐𝜏1
⊨ 𝜓(𝑐1̅, 𝑐2̅) implies 𝔐𝜏2

⊨ 𝜓(𝜇(𝑐1̅), 𝜇(𝑐2̅)); 𝑐1̅ ∈ 𝑉𝑞,𝔐𝜏1
(𝑐2̅) implies 

𝜇(𝑐1̅) ∈ 𝑉𝑞,𝔐𝜏1
(𝜇(𝑐2̅)) ; and from 𝑐1̅ ∈ 𝑉𝑞,𝔐𝜏1

(𝑐2̅)  it follows that 𝜇(𝑐1̅) ∈

𝑉𝑞,𝔐𝜏1
(𝜇(𝑐2̅)).  That is the 𝑉𝑞,𝔐𝜏1

-neighborhoods are connected to 𝑉𝑞,𝔐𝜏2
-

neighborhoods. Moreover, if there exist no 𝑐3̅ ∈ 𝑞(𝑀𝜏1
)  such that 

𝑉𝑞,𝔐𝜏1
(𝜇(𝑐1̅)) <∗ 𝑐3̅ <∗ 𝑉𝑞,𝔐𝜏1

(𝜇(𝑐2̅)), meaning that the 𝑉𝑞,𝔐𝜏1
-neighborhoods of 𝑐1̅ 

and 𝑐2̅ are ordered in a discrete way by means of <∗, then neighborhoods of 𝜇(𝑐1̅) 

and 𝜇(𝑐2̅) need to be discretely ordered by means of <∗ as well. The same is also true 

for neighborhoods that are ordered in a dense way. Consequently 𝜇(𝑉𝑞,𝔐𝜏1
(𝑓1̅

1)) =

(𝑉𝑞,𝔐𝜏2
(𝑓1̅

1)) 𝜇(𝑉𝑞,𝔐𝜏1
(𝑓2̅

1)) = (𝑉𝑞,𝔐𝜏2
(𝑓2̅

1)) (having that 𝑓1̅
1 and 𝑓2̅

1 are located in 

two first neighborhoods ordered discretely). It is a contradiction since 

𝜇−1(𝑉𝑞,𝔐𝜏2
(𝑓3̅

1)) has to be in the dense interval of neighborhoods. 

The number of different infinite sequences of 0’s and 1’s is equal to 2𝜔, 𝐼(𝑇 ∪
𝑝(𝑎̃), 𝜔) = 2𝜔 . Any structure of 𝑇  gives maximally 𝜔  models of the theory 𝑇 ∪
𝑡𝑝(𝑎̃), and consequently, 𝐼(𝑇, 𝜔) = 2𝜔. 

           □ Theorem 6.2 

As an easy corollary the following holds: 

 

Corollary 6.1 Let we have a countable small theory 𝑇 with 𝐼(𝑇, 𝜔) < 2𝜔 . If 

there exists such a formula 𝜓(𝑥̅, 𝑦̅, 𝑐̅) which determines a partial order which has a 

𝜓-chain of an infinite length, then this chain is dense. 

 

Theorem 6.1 is very powerful in studying the number of countable models. The 

main theorem of the next chapter can be obtained through using the construction in the 

proof of the Theorem 6.1. 
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7 MAXIMALITY OF NUMBER OF COUNTABLE MODELS FOR 

LINEARLY ORDERED THEORIES 

 

Further by 𝔑 we will be considering a countable saturated model of a theory 𝑇 

which is small. We will study linearly ordered theories and suppose that < is an 

∅ −definable linear order relation. 

The formulas of the first order will be often written by the relations in definable 

sets. For instance: 

 

𝑥 < 𝜑(𝑁) ≡ ∀𝑦(𝜑(𝑦) → 𝑥 < 𝑦); 

𝑥 ∈ (𝛽1, 𝛽2) ≡ 𝛽1 < 𝑥 < 𝛽2; 

𝜑(𝑁) ∩ 𝜃(𝑁) ≠ ∅ ≡ 𝑁 ⊨ ∃𝑥(𝜑(𝑥) ∧ 𝜃(𝑥)); 

𝜑(𝑁) < 𝜃(𝑁)+ ≡ 𝑁 ⊨ ∀𝑡(∀𝑦(𝜃(𝑦) → 𝑦 < 𝑡) → ∀𝑥(𝜑(𝑥) → 𝑥 < 𝑡)). 

 

For a subset 𝐴 ⊂ 𝑁 (which is not necessary definable) we denote: 

  

    𝐴+: = {𝛾 ∈ 𝑁|∀𝑎 ∈ 𝐴: 𝑁 ⊨ 𝑎 < 𝛾} 

𝐴−: = {𝛾 ∈ 𝑁|∀𝑎 ∈ 𝐴: 𝑁 ⊨ 𝛾 < 𝑎}. 

 

Let 𝐴, 𝐵 ⊆ 𝑁. Then 𝐴 ⊂ 𝐵 means 𝐴 ⊆ 𝐵 and 𝐴 ≠ 𝐵. 

The following is a well-known definition: 

 

Definition 7.1 Let 𝐴 ⊂ 𝐵. The set 𝐴 is called to be convex in the set 𝐵, if   

 

∀𝑥, 𝑦 ∈ 𝐴(𝑥 < 𝑦), ∀𝑧 ∈ 𝐵(𝑥 < 𝑧 < 𝑦 → 𝑧 ∈ 𝐴). 

  

If 𝐴 is convex in 𝑁 (that is, it is convex in the universe of the structure), we say 

that 𝐴 is convex. 

For a formula 𝜑(𝑥, 𝑎̅) a convex closure of 𝜑 is the following formula 𝜑𝑐: 

  

𝜑𝑐(𝑥, 𝑎̅): = ∃𝑦1, ∃𝑦2(𝜑(𝑦1, 𝑎̅) ∧ 𝜑(𝑦2, 𝑎̅) ∧ (𝑦1 ≤ 𝑥 ≤ 𝑦2)). 

 

For a 1-type 𝑝 ∈ 𝑆1(𝐴) a convex closure of 𝑝 is a type 𝑝𝑐, such that 

  

𝑝𝑐 = {𝜑𝑐(𝑥, 𝑎̅)|𝜑(𝑥, 𝑎̅) ∈ 𝑝} [65, P. 6]. 

 

Definition 7.2 [65, P. 6] Let 𝐴  and 𝐵  be subsets of 𝑁 , 𝜑(𝑥, 𝑦)  be an 𝐴 -

definable 2-formula. The formula 𝜑(𝑥, 𝑦) is called 𝑩-stable, if for every element 

𝛼 ∈ 𝐵  there are 𝛾1, 𝛾2 ∈ 𝐵 , 𝛾1 < 𝛼 < 𝛾2  such that 𝛾1 < 𝜑(𝛼, 𝑁) < 𝛾2 , and such 

that 𝜑(𝛼, 𝑁) ∩ 𝐵 ≠ ∅.   

  

If 𝐵 = Θ(𝑁) and Θ is an 𝐴-definable 1-formula, or 𝐵 = 𝑝(𝑁) and 𝑝 ∈ 𝑆1(𝐴) 

is one-type then we say that 𝜑(𝑥, 𝑦) is 𝚯- stable or 𝒑- stable. 
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Definition 7.3 [65, P. 6] A 𝐵-stable two-formula 𝜑(𝑥, 𝑦) is convex to the right 

on 𝐵, if 

  

∀𝛼 ∈ 𝐵, ∀𝛽(𝛽 ∈ 𝜑(𝛼, 𝑁) → 𝛼 ≤ 𝛽 ∧ ∀𝛾 ∈ 𝐵(𝛼 < 𝛾 < 𝛽 → 𝛾 ∈ 𝜑(𝛼, 𝑁)). 

  

If Θ is an 𝐴-definable 1-formula, or 𝑝 ∈ 𝑆1(𝐴) is a 1-type such that 𝐵 = Θ(𝑁) 

or 𝐵 = 𝑝(𝑁), then we say that the formula 𝜑(𝑥, 𝑦) is convex to the right on Θ(𝑥) or 

on 𝑝(𝑥). 

 

Definition 7.4 [65, P. 7] We say that a 𝐵-stable 2-formula 𝜑(𝑥, 𝑦) is convex to 

the left on the set 𝐵, if 

 

∀𝛼 ∈ 𝐵, ∀𝛽(𝛽 ∈ 𝜑(𝛼, 𝑁) → 𝛽 ≤ 𝛼) ∧ ∀𝛾 ∈ 𝐵(𝛽 < 𝛾 < 𝛼 → 𝛾 ∈ 𝜑(𝛼, 𝑁)). 
 

If Θ is an 𝐴-definable 1-formula, or 𝑝 ∈ 𝑆1(𝐴) is a 1-type such that 𝐵 = Θ(𝑁) 

or 𝐵 = 𝑝(𝑁), then we say that the formula 𝜑(𝑥, 𝑦) is convex to the left on Θ(𝑥) or 

on 𝑝(𝑥). 

The definitions of a convex to the right, convex to the left, and 𝐵-stable formulas 

generalize the notions for weakly o-minimal theories, which were defined in [66] and 

[67], and introduced in [68]. The other generalization of 𝑝-stability were represented 

in [52, P. 161]. In this work instead of the notion “𝑝-stable” the notion “𝑝-preserving” 

is used. 

 

Definition 7.5 [65, P. 7] 1) A convex to the right 2-formula 𝜑(𝑥, 𝑦) increases 

on 𝐵, if ∀𝛼, 𝛽 ∈ 𝐵, (𝛼 < 𝛽 → 𝜑(𝛽, 𝑁)+ ⊆ 𝜑(𝛼, 𝑁)+).  

2) A convex to the left 2-formula 𝜑(𝑥, 𝑦) decreases on 𝐵, if ∀𝛼, 𝛽 ∈ 𝐵, (𝛼 <
𝛽 → 𝜑(𝛼, 𝑁)− ⊆ 𝜑(𝛽, 𝑁)−).   

  

We are interested in the case when 𝛽 ∈ 𝜑(𝛼, 𝑁). 

 

Definition 7.6 [65, P. 7] An 𝐴-definable increasing on 𝐵 (decreasing on 𝐵) 2-

formula 𝜑(𝑥, 𝑦)  is a quasi-successor on 𝐵 , if ∀𝛼 ∈ 𝐵, ∃𝛽 ∈ 𝜑(𝛼, 𝑁) ∩ 𝐵 , 𝐵 ∩
(𝜑(𝛽, 𝑁)\𝜑(𝛼, 𝑁)) = ∅. 

 

As in the previous definitions, If Θ(𝑥)  is an 𝐴-definable 1-formula, or 𝑝 ∈
𝑆1(𝐴) is a 1-type such that 𝐵 = Θ(𝑁) or 𝐵 = 𝑝(𝑁), then we say that the formula 

𝜑(𝑥, 𝑦) is a quasi-successor on Θ(𝑥) or on 𝑝(𝑥). 

 

If 𝜑(𝑥, 𝑦) is a quasi-successor formula, we denote: 

  

𝜑0(𝑥, 𝑦): = {𝑥 = 𝑦}; 
𝜑𝑛(𝑥, 𝑦): = ∃𝑦1, … , ∃𝑦𝑛−1(𝜑(𝑥, 𝑦1) ∧ 𝜑(𝑦1, 𝑦2) ∧ … ∧ 𝜑(𝑦𝑛−1, 𝑦)); 

    𝜑−𝑛(𝑥, 𝑦): = ∃𝑥1, … , ∃𝑥𝑛−1(𝜑(𝑥1, 𝑥) ∧ 𝜑(𝑥2, 𝑥1) ∧ … ∧ 𝜑(𝑦, 𝑥𝑛−1) ∧ 



45 

 

∧ (𝑦 ≤ 𝑥) ∧𝑖=1
𝑛−1 𝑥𝑖 ≤ 𝑥). 

 

𝜑𝑛(𝑥, 𝑦) is also a quasi-successor on 𝐵. 

Let 𝜑(𝑥, 𝑦) be a quasi-successor on 𝐵. For 𝛼 ∈ 𝐵 we consider a neighbourhood 

the formula 𝜑 defines by acting on 𝛼: 

 

𝑉𝐵,𝜑(𝛼): = {𝛾 ∈ 𝐵 | ∃𝑛 ∈ ℤ, 𝛾 ∈ 𝜑𝑛(𝛼, 𝑁) ∩ 𝐵}. 

 

The proof of the following theorem can be obtained as a modification of the 

presented proof of Theorem 6.1. 

 

Theorem 7.1 [65, P. 8] Let we are given a countable complete theory 𝑇 be of (an 

expansion of) a linear order. Let 𝐴 be a finite subset of 𝑁, 𝑝 be a 1-type over the set 

𝐴, 𝜑(𝑥, 𝑦) be an 𝐴-definable quasi-successor on 𝑝(𝑥). Then the theory 𝑇 has 2𝜔 

countable models up to an isomorphism. 

 

 Proof of Theorem 7.1 If the theory 𝑇 is not small, then by the Theorem 2.3.2 it 

has the maximal number of countable models up to an isomorphism, and then the 

theorem is proved. Therefore further we will can consider the theory 𝑇 to be small. 

Without loss of generality we can assume that the formula 𝜑(𝑥, 𝑦) is convex to 

the right on the type 𝑝(𝑥). 

Denote by 𝑞(𝑥, 𝑦)  the followng 2-type: {𝑥 < 𝑦} ∪ 𝑝(𝑥) ∪ 𝑝(𝑦) ∪
{𝑦 ∈ 𝜑𝑛(𝑥, 𝑁) | 𝑛 < 𝜔} ∪  {𝑅(𝑦, 𝑥) | 𝑅(𝑥, 𝑦)  is an 𝐴 -definable convex to the 

right on 𝑝 2-formula with the condition: ∀𝑛 < 𝜔, ∀𝛼 ∈ 𝑝(𝑁), 𝜑𝑛(𝛼, 𝑁) ∩ 𝑝(𝑁) ⊂
𝑅(𝛼, 𝑁)} ∪ {𝐿(𝑥, 𝑦)|𝐿(𝑥, 𝑦) is an 𝐴-definable convex to the leftt on 𝑝 2-formula with 

the condition: ∀𝑛 < 𝜔 , ∃𝛼1, 𝛼2 ∈ 𝑝(𝑁), 𝛼1 < 𝜑𝑛(𝛼2, 𝑁), 𝛼1 ∈ 𝐿(𝛼2, 𝑁)} . The 

consistence of 𝑞(𝑥, 𝑦) is verified directly. 

Let the tuple < 𝛼, 𝛽 > realizes 𝑞(𝑥, 𝑦). Then fix this tuple until the end of the 

proof of the Theorem 7.1. Denote 

  

(𝑉𝑝,𝜑(𝛼), 𝑉𝑝,𝜑(𝛽))𝑝(𝑁): = {𝛾 ∈ 𝑝(𝑁)|𝑉𝑝,𝜑(𝛼) < 𝛾 < 𝑉𝑝,𝜑(𝛽)}. 

 

Lemma 7.1 [65, P. 8] ∀𝛾1, 𝛾2 ∈ (𝑉𝑝,𝜑,(𝛼), 𝑉𝑝,𝜑(𝛽))𝑝(𝑁), 

  

𝑡𝑝𝑐(𝛾1|𝐴 ∪ {𝛼, 𝛽}) = 𝑡𝑝𝑐(𝛾2|𝐴 ∪ {𝛼, 𝛽}). 

  

 Proof of Lemma 7.1 Let that the conclusion of Lemma is not true, that is there 

are 𝛾1, 𝛾2 ∈ (𝑉𝑝,𝜑(𝛼), 𝑉𝑝,𝜑(𝛽))𝑝(𝑁), there exists (𝐴 ∪ {𝛼, 𝛽})-definable formula with 

𝛾1 ∈ 𝐻(𝑁, 𝛼, 𝛽) < 𝛾2. We can think of 𝐻(𝑁, 𝛼, 𝛽) as being convex. If not we can take 

an (𝐴 ∪ {𝛼, 𝛽})-definable formula which defines the set (𝐻(𝑁𝛼, 𝛽)+)−. 

By the theorem of compactness, we have the following: 

(∗) there exists an 𝐴-definable formula Θ(𝑥) of the type 𝑝 such that for every 

elements 𝛼′, 𝛽′ ∈ Θ(𝑁), 𝛼′ < 𝛽′ , 𝑉Θ,𝜑(𝛼′) < 𝑉Θ,𝜑(𝛽′)  implies there are 𝛾1, 𝛾2 ∈
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(𝑉Θ,𝜑(𝛼′), 𝑉Θ,𝜑(𝛽′))Θ(𝑁), with 𝛾1 ∈ 𝐻(𝑁, 𝛼′, 𝛽′) < 𝛾2 and 𝛾2 ∈ 𝜑(𝛾1, 𝑁). 

For 𝑘, 𝑛1, 𝑛2 < 𝜔  such that 𝑛1 + 𝑛2 < 𝑘  let us have the following notation: 

𝑆𝑘,𝑛1,𝑛2
(𝐻)(𝑥, 𝑦): = (𝑥 < 𝑦 ∧ 𝑦 ∈ 𝜑𝑘(𝑥, 𝑁)) → ∃𝑧1, ∃𝑧2(𝑥 < 𝑧1 < 𝑧2 < 𝑦 ∧

𝑧1 ∈ 𝜑𝑛1(𝑥, 𝑁) ∧ 𝑦 ∈ 𝜑𝑛2(𝑧2, 𝑁) ∧ 𝑧1 ∈ 𝐻(𝑁, 𝑥, 𝑦) ∧ 𝐻(𝑁, 𝑥, 𝑦) < 𝑧2 ∧ 𝑧2 ∈
𝜑(𝑧1, 𝑁)). 

 

Claim 7.1 [65, P. 9] There are non-decreasing non-constant functions 𝑠1, 𝑠2: 𝜔 →
𝜔 for which there exists 𝑚 < 𝜔 such that ∀𝑘 > 𝑚, ∀𝛼′, 𝛽′ ∈ (𝛼, 𝛽)𝑝(𝑁) we have that 

𝑁 ⊨ 𝑆𝑘,𝑠1(𝑘),𝑠2(𝑘)(𝐻)(𝛼′, 𝛽′).  

  

Proof of Claim 7.1 In case opposite, by theorem of compactness, we obtain the 

contradiction with the definition of 𝐻(𝑥, 𝑦, 𝛼, 𝛽). 

          □ 

Denote 𝐻∅(𝑥, 𝛼, 𝛽): = ¬𝐻(𝑥, 𝛼, 𝛽) ∧ ∃𝑦(𝜑(𝑦, 𝑥) ∧ 𝐻(𝑦, 𝛼, 𝛽)). The Lemma 7.1 

implies that 𝐻∅(𝑁, 𝛼, 𝛽) ∩ 𝑝(𝑁) = ∅ and 𝐻∅(𝑁, 𝛼, 𝛽) ∩ 𝑝(𝑁) ⊂ 𝑉𝑝,𝜑(𝛾∅) for some 

element 𝛾∅ ∈ (𝑉𝑝,𝜑(𝛼), 𝑉𝑝,𝜑(𝛽))𝑝(𝑁). 

Now denote 

  

𝐺0(𝑥, 𝛼, 𝛽): = ∃𝑧(𝐻(𝑥, 𝛼, 𝑧) ∧ 𝐻∅(𝑧, 𝛼, 𝛽)), 

𝐺1(𝑥, 𝛼, 𝛽): = ∃𝑧(𝐻(𝑥, 𝑧, 𝛽) ∧ 𝐻∅(𝑧, 𝛼, 𝛽)). 

 

So, by (∗) we have that 𝐺0(𝑁, 𝛼, 𝛽) < 𝑉𝑝,𝜑(𝛾∅), 𝑉𝑝,𝜑(𝛼) < 𝐺0(𝑁, 𝛼, 𝛽)+  and 

𝑉𝑝,𝜑(𝛾∅) < 𝐺1(𝑁, 𝛼, 𝛽)+, 𝐺1(𝑁, 𝛼, 𝛽) < 𝑉𝑝,𝜑(𝛽). 

Denote 

  

𝐻0(𝑥): = ¬𝐺0(𝑥, 𝛼, 𝛽) ∧ ∃𝑦(𝐺0(𝑦, 𝛼, 𝛽) ∧ 𝜑(𝑦, 𝑥)), 

𝐻1(𝑥): = ¬𝐺1(𝑥, 𝛼, 𝛽) ∧ ∃𝑦(𝐺1(𝑦, 𝛼, 𝛽) ∧ 𝜑(𝑦, 𝑥)). 

 

Then by the Lemma 7.1 we have 𝐻0(𝑁, 𝛼, 𝛽) ∩ 𝑝(𝑁) = ∅ and 𝐻0(𝑁, 𝛼, 𝛽) ∩
𝑝(𝑁) ⊂ 𝑉𝑝,𝜑(𝛾0)  for some 𝛾0 ∈ (𝑉𝑝,𝜑(𝛼), 𝑉𝑝,𝜑(𝛾0))𝑝(𝑁) . And 𝐻1(𝑁, 𝛼, 𝛽) ∩

𝑝(𝑁) = ∅  and 𝐻1(𝑁, 𝛼, 𝛽) ∩ 𝑝(𝑁) ⊂ 𝑉𝑝,𝜑(𝛾1)  for some 𝛾1 ∈

(𝑉𝑝,𝜑(𝛾∅), 𝑉𝑝,𝜑(𝛽))𝑝(𝑁). 

Thus we have 𝛼 < 𝐻0(𝑁) < 𝐻∅(𝑁) < 𝐻1(𝑁) < 𝛽, and 

 

𝑉𝑝,𝜑(𝛼) < 𝑉𝑝,𝜑(𝛾0) < 𝑉𝑝,𝜑(𝛾∅) < 𝑉𝑝,𝜑(𝛾1) < 𝑉𝑝,𝜑(𝛽), 

𝐻0(𝑁) ⊂ 𝑉𝑝,𝜑(𝛾0), 𝐻∅(𝑁) ⊂ 𝑉𝑝,𝜑(𝛾∅), 𝐻1(𝑁) ⊂ 𝑉𝑝,𝜑(𝛾1). 

 

Then denote 

  

𝐺00(𝑥, 𝛼, 𝛽): = ∃𝑧(𝐻(𝑥, 𝛼, 𝑧) ∧ 𝐻0(𝑧, 𝛼, 𝛽)), 

𝐺01(𝑥, 𝛼, 𝛽): = ∃𝑧1, 𝑧2(𝐻(𝑥, 𝑧1, 𝑧2) ∧ 𝐻0(𝑧1, 𝛼, 𝛽) ∧ 𝐻∅(𝑧2, 𝛼, 𝛽)), 

𝐺10(𝑥, 𝛼, 𝛽): = ∃𝑧1, 𝑧2(𝐻(𝑥, 𝑧1, 𝑧2) ∧ 𝐻∅(𝑧1, 𝛼, 𝛽) ∧ 𝐻1(𝑧2𝛼, 𝛽)), 
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𝐺11(𝑥, 𝛼, 𝛽): = ∃𝑧(𝐻(𝑥, 𝑧, 𝛽) ∧ 𝐻1(𝑧, 𝛼, 𝛽)). 

 

So, we have 𝐺00(𝑁, 𝛼, 𝛽) < 𝑉𝑝,𝜑(𝛾0), 𝑉𝑝,𝜑(𝛼) < 𝐺00(𝑁, 𝛼, 𝛽)+ and 𝑉𝑝,𝜑(𝛾0) <

𝐺01(𝑁, 𝛼, 𝛽)+, 𝐺01(𝑁, 𝛼, 𝛽) < 𝑉𝑝,𝜑(𝛾∅),  𝐺10(𝑁, 𝛼, 𝛽) < 𝑉𝑝,𝜑(𝛾1),  𝑉𝑝,𝜑(𝛾∅) <

𝐺10(𝑁, 𝛼, 𝛽)+, and 𝑉𝑝,𝜑(𝛾∅) < 𝐺11(𝑁, 𝛼, 𝛽)+, 𝐺11(𝑁, 𝛼, 𝛽) < 𝑉𝑝,𝜑(𝛽). 

Then by the Lemma 7.1 we have the following: 𝐻00(𝑁, 𝛼, 𝛽) ∩ 𝑝(𝑁) = ∅ and 

𝐻00(𝑁, 𝛼, 𝛽) ∩ 𝑝(𝑁) ⊂ 𝑉𝑝,𝜑(𝛾00)  for some 𝛾00 ∈ (𝑉𝑝,𝜑(𝛼), 𝑉𝑝,𝜑(𝛾0)) − 𝑝(𝑁) . 

Also 𝐻01(𝑁, 𝛼, 𝛽) ∩ 𝑝(𝑁) = ∅  and 𝐻01(𝑁, 𝛼, 𝛽) ∩ 𝑝(𝑁) ⊂ 𝑉𝑝,𝜑(𝛾01)  for some 

𝛾01 ∈ (𝑉𝑝,𝜑(𝛾0), 𝑉𝑝,𝜑(𝛾∅))𝑝(𝑁) . And 𝐻10(𝑁, 𝛼, 𝛽) ∩ 𝑝(𝑁) = ∅  and 𝐻10(𝑁, 𝛼, 𝛽) ∩

𝑝(𝑁) ⊂ 𝑉𝑝,𝜑(𝛾10) for some 𝛾10 ∈ (𝑉𝑝,𝜑(𝛾∅), 𝑉𝑝,𝜑(𝛾1))𝑝(𝑁) 𝐻11(𝑁, 𝛼, 𝛽) ∩ 𝑝(𝑁) = ∅ 

and 𝐻11(𝑁, 𝛼, 𝛽) ∩ 𝑝(𝑁) ⊂ 𝑉𝑝,𝜑(𝛾11) for some 𝛾11 ∈ (𝑉𝑝,𝜑(𝛾1), 𝑉𝑝,𝜑(𝛽))𝑝(𝑁). 

By applying this method 𝜔  times, we get a countable family of 𝐴-definable 

formulas 𝐻𝛿 , 𝛿 ∈ 2<𝜔 such that for every 𝜏 ∈ 2𝜔, 𝜏(𝑛) ∈ {0,1} there is 𝑝𝜏 ∈ 𝑆1(𝐴), 

one-type over 𝐴 which extends the following set of 𝐴-definable 1-formulas: 

   

Γ𝜏(𝑥): = {𝑥 < 𝐻𝜏(1),…,𝜏(𝑛)(𝑁, 𝛼̅, 𝛽)|𝜏(𝑛 + 1) = 0} ∪ 

{𝐻𝜏(1),…,𝜏(𝑛)(𝑥, 𝛼, 𝛽)|𝜏(𝑛 + 1) = 1}. 

 

This contradicts with the assumption that the theory 𝑇 is small. 

           □ 
Using the proof of Lemma 7.1 we can get the following: 

 

Lemma 7.2 [65, P. 10] For each 𝛼1, … , 𝛼𝑛 ∈ (𝑉𝑝,𝜑(𝛼), 𝑉𝑝,𝜑(𝛽))𝑝(𝑁)  (𝛼̅𝑛: =<

𝛼1, … , 𝛼𝑛 >)  with 𝑉𝑝,𝜑(𝛼𝑖) < 𝑉𝑝,𝜑(𝛼𝑖+1)  (1 ≤ 𝑖 ≤ (𝑛 − 1)), for each 𝛾̅ ∈ 𝑁  with 

𝑡𝑝(𝛾̅|𝐴 ∪ 𝛼̅𝑛 ∪ {𝛼, 𝛽})  being isolated the following holds: ∀𝛾1, 𝛾2 ∈
(𝑉𝑝,𝜑,(𝛼𝑖), 𝑉𝑝,𝜑(𝛼𝑖+1)), 

  

𝑡𝑝𝑐(𝛾1|𝐴 ∪ 𝛼̅𝑛 ∪ 𝛾̅ ∪ {𝛼, 𝛽}) = 𝑡𝑝𝑐(𝛾2|𝐴 ∪ 𝛼̅𝑛 ∪ 𝛾̅ ∪ {𝛼, 𝛽}). 

  

It follows from the Lemma 7.2 that any element 𝛾 ∈ (𝑉𝑝,𝜑,(𝛼𝑖), 𝑉𝑝,𝜑(𝛼𝑖+1)) has 

non-isolated one-type over 𝐴 ∪ 𝛼̅𝑛 ∪ 𝛽̅ ∪ {𝛼, 𝛽} because it is irrational. 

Let 2<𝜔 be a set of all finite tuples of elements from {0,1}. Then for every 𝜂 ∈
2<𝜔, 𝜂: =< 𝜂(1), 𝜂(2), … , 𝜂(𝑛) > denote 𝑙(𝜂): = 𝑛. Let 𝜂 = 𝜋 ∈ 2<𝜔, then we say 

that 𝜂  less than 𝜋  (𝜂 < 𝜋)  if either 𝜂 ⊂ 𝜋 ∧ 𝜋(𝑙(𝜂) + 1) = 1  or ∃𝑖 ≤
𝑚𝑖𝑛{𝑙(𝜂), 𝑙(𝜋)}, ∀𝑗 < 𝑖, 𝜂(𝑗) = 𝜋(𝑗) ∧ 𝜂(𝑖) = 0 ∧ 𝜋(𝑖) = 1. 

Let < 𝛼1, 𝛼2, … , 𝛼𝑛, …   >𝑛<𝜔 be an 𝜔-sequence of elements from the set of 

realizations 𝑝(𝑁) , such that 𝑉𝑝,𝜑(𝛼) < 𝑉𝑝,𝜑(𝛼𝑖) < 𝑉𝑝,𝜑(𝛼𝑖+1) < 𝑉𝑝,𝜑(𝛽) (1 ≤ 𝑖 ≤

𝜔). 

Then for every 𝜏 ∈ 2𝜔 we will construct, by using the Lemma 7.2, a countable 

structure 𝑀𝜏 ≺ 𝑁 such that for every 𝑛 < 𝜔, 𝛼𝑛 ∈ 𝑀𝜏, we have that 𝜏(𝑛) = 0 ↔ in 

the set 𝑀𝜏 there is no element from (𝑉𝑝,𝜑(𝛼2𝑛), 𝑉𝑝,𝜑(𝛼2𝑛+1))𝑝(𝑁) and  𝜏(𝑛) = 1 ↔ 
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for every 𝜂 ∈ 2<𝜔, there exists an element 𝛼𝑛,𝜂 ∈ (𝑉𝑝,𝜑(𝛼2𝑛), 𝑉𝑝,𝜑(𝛼2𝑛+1))𝑝(𝑁) ∩ 𝑀𝜏, 

such that for every two distinct 𝜂 = 𝜋 ∈ 2<𝜔  if 𝜂 < 𝜋  then 𝑉𝑝,𝜑(𝛼𝑛,𝜂) <

𝑉𝑝,𝜑𝜑(𝛼𝑛,𝜋). 

Construction of the model 𝑀𝜏. 

Let 𝜏 ∈ 2𝜔. We will construct 𝑀𝜏 as a union of an increasing chain of finite sets 

𝑀𝜏 = ⋃𝑚<𝜔 𝐵𝑚, 𝐵𝑚−1 ⊂ 𝐴𝑚 ⊂ 𝐵𝑚  such that |𝐵𝑚|, |𝐴𝑚| < 𝜔 ; |𝐵𝑚\𝐴𝑚| =
𝑚2; 𝑡𝑝(𝐵𝑚\𝐴𝑚|𝐴𝑚) is isolated and for each 𝑖 ≤ 𝑚 we have some fix enumeration 

of 𝐹1(𝐵𝑖), where 𝐹1(𝐵𝑖) is the set of all 𝐵𝑖-definable 1-formulas. 

Step 0. 

Denote 𝐵0: = 𝐴. Fix some enumeration of 𝐹1(𝐵0). 

Step 𝑚 + 1. By the Lemma 7.2 and by using approach in the choice of 𝛾𝜂 in the 

proof of the Lemma 7.1 we can obtain 

  

𝐴𝑚+1: = 𝐵𝑚 ∪ {𝛼𝑖,𝜂|𝜂 ∈ 2<𝜔, 𝑙(𝜂) ≤ 𝑚 + 1, 𝜏(𝑖) = 1}. 

 

For every 𝑘 < 𝑚 + 1 denote 𝐵𝑚+1,𝑘: = 𝐴𝑚+1 ∪ {𝛽𝑚+1,𝑘′|𝑘′ < 𝑘}. 

Define 𝛽𝑚+1,𝑘. Let Θ𝑘,𝑗(𝑥) be 1-formula from 𝐹1(𝐵𝑘) such that Θ𝑚+1,𝑘(𝑁) ∩

𝐵𝑚+1,𝑘 = ∅ and 𝑗 is minimal with this property. Then take 𝐺(𝑥) an arbitrary atom 

from 𝐹1(𝐵𝑚+1,𝑘) (that is for every 𝐾(𝑥) ∈ 𝐹1(𝐵𝑚+1,𝑘) if 𝐺(𝑁) ∩ 𝐾(𝑁) = ∅ then 

𝐺(𝑁) ⊆ 𝐾(𝑁) ) with 𝐺(𝑁) ⊆ Θ𝑘,𝑗(𝑁) and arbitrary element from 𝛽𝑚+1,𝑘 ∈ 𝐺(𝑁). 

The existence of 𝐺(𝑥) follows from our assuming that 𝑇 is small and because 𝐵𝑚+1,𝑘 

is finite. 

Then put 𝐵𝑚+1: = ⋃𝑘<𝑚+1 𝐵𝑚+1,𝑘 and fix some enumeration of 𝐹1(𝐵𝑚+1). 

Let us to verify that 𝑀𝜏 is model. Consider an arbitrary 𝑀𝜏-definable 1-formula 

𝛹(𝑥, 𝛾̅), 𝛾̅ ∈ 𝑀𝜏  such that 𝑁 ⊨ ∃𝑥Ψ(𝑥, 𝛾̅). Then there exists 𝑘 < 𝜔 such that 𝛾̅ ∩
(𝐵𝑘\𝐵𝑘−1) = ∅. Thus for some 𝑚 < 𝜔, 𝑘 < 𝑚  we have 𝑁 ⊨ 𝛹(𝛽𝑚,𝑘 , 𝛾̅), 𝛽 ∈ 𝑀𝜏 . 

What means that 𝑀𝜏 ≺ 𝑁. 
It is clear that if 𝜏 = 𝜏′ ∈ 2𝜔 , then in language 𝐿∗: = 𝐿 ∪ 𝐴 ∪ {𝛼, 𝛽} , 

𝑀𝜏
∗ ≅𝐿∗ 𝑀𝜏′

∗ . 

Every countable structure of the theory 𝑇 has no more than 𝜔 nonisomorphic 

models in the extended language 𝐿∗ . Therefore the original theory 𝑇  has 2𝜔 

countable non-isomorphic models. 

           □ 
This finishes the proof of the main result of this section. By the theorem we obtain 

that if there exists such a formula quasi-successor, then the countable spectrum of a 

small theory is maximal. 
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8 VAUGHT'S CONJECTURE FOR WEAKLY O-MINIMAL THEORIES 

OF CONVEXITY RANK 1 

 

Let us denote by 𝔏 a countable first order language. In this section we will 

consider 𝔏–models and suppose that the language 𝔏 contains a symbol < which is 

interpreted as a binary relation of a linear order in these models. An open interval in 

a model 𝔐 is a definable with parameters subset of 𝑀 which is of the form 𝐼 = {𝑐 ∈
𝑀: 𝑀 ⊨ 𝑎 < 𝑐 < 𝑏} for some 𝑎, 𝑏 ∈ 𝑀 ∪ {−∞, ∞} with 𝑎 < 𝑏. In a similar way, we 

can define closed, half open–half closed, etc., intervals in 𝔐. An arbitrary element 

𝑎 ∈ 𝑀 can be represented as the following interval: [𝑎, 𝑎]. By an  interval in the 

model 𝔐 we will ambiguously mean, any of the above mentioned interval types in 

𝔐. Recall that a subset 𝐴 of the universum 𝑀 is called convex if for each elements 

𝑎, 𝑏 ∈ 𝐴 and 𝑐 ∈ 𝑀 𝑎 < 𝑐 < 𝑏 implies 𝑐 ∈ 𝐴. 

This section studies the concept of a weak o-minimality which was firstly 

investigated by D. Macpherson, D. Marker, and Ch. Steinhorn in their article [70]. By 

a  weakly o-minimal model, or a weakly ordered-minimal structure we understand 

a model 𝔐 = 〈𝑀, =, <, … 〉  which has a linear order relation such that any 

parametrically definable subset of 𝔐 can be represented in form of a union of a finite 

number of convex sets in 𝔐 . Let us recall that a model 𝔐  is called o-minimal 

(ordered-minimal) if every its definable subset can be represented as a union of a 

finite number of intervals and points in 𝔐. Thus, weak o-minimality is a generalization 

of the concept of o-minimality. 

Let 𝐴  and 𝐵  be arbitrary subsets of a linearly ordered model 𝑀 . Then the 

expression 𝐴 < 𝐵  means that 𝑎 < 𝑏  whenever 𝑎 ∈ 𝐴  and 𝑏 ∈ 𝐵 . The expression 

𝐴 < 𝑏 (𝑏 < 𝐴 respectively) means that 𝐴 < {𝑏} ({𝑏} < 𝐴). By 𝐴+ (𝐴−) we denote 

the set of elements 𝑏 ∈ 𝑀 satisfying the condition 𝐴 < 𝑏 (𝑏 < 𝐴). For an arbitrary 

type 𝑝 by 𝑝(𝑀) we denote the set of all elements which realize the type 𝑝 in model 

𝔐 . Given an 𝑛 -tuple 𝑏̅ = 〈𝑏1, 𝑏2, … , 𝑏𝑛〉  by 𝑏̅𝑖  we denote the following tuple: 

〈𝑏1, 𝑏2, … , 𝑏𝑖〉 for any 1 ≤ 𝑖 ≤ 𝑛 − 1. 

Given a function 𝑓  on 𝑀  by 𝐷𝑜𝑚(𝑓)  we denote the domain of 𝑓 , and by 

Range(𝑓) we denote its range. 

A theory 𝑇 is said to be binary if every its formula is equivalent to a Boolean 

combination of formulas with no more than 2 free variables in 𝑇. 

In the following definitions we consider 𝑀  to be a weakly ordered-minimal 

model, 𝐴, 𝐵 ⊆ 𝑀 , 𝑀  to be |𝐴|+ –saturated, and the types 𝑝 and 𝑞 ∈ 𝑆1(𝐴) to be 

non-algebraic 1-types. 

Let us recall the following definition. 

 

Definition 8.1 [45, P. 230] A type 𝑝 said to be not weakly orthogonal to a type 

𝑞 (𝑝 ⊥𝑤 𝑞) if there is an 𝐴-definable formula 𝐻(𝑥, 𝑦), 𝑎 ∈ 𝑝(𝑀), and realizations 

𝑏1, 𝑏2 from 𝑞(𝑀) for which that 𝑏1 ∈ 𝐻(𝑀, 𝑎) and 𝑏2 ∈ 𝐻(𝑀, 𝑎). 

 

In other words, 𝑝 is weakly orthogonal to 𝑞 (𝑝 ⊥𝑤 𝑞) if 𝑝(𝑥) ∪ 𝑞(𝑦) has a 
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unique extension to a complete 2-type over 𝐴. 

 

Lemma 8.1 ([71], Corollary 34 (iii)) The non-weak orthogonality relation is a 

relation of equivalence on the set of all one-types 𝑆1(𝐴). 

 

Definition 8.2 [72] We say that a type 𝑝 is quite orthogonal to the type 𝑞 

(𝑝 ⊥𝑞 𝑞) if there is no 𝐴–definable bijection 𝑓: 𝑝(𝑀) → 𝑞(𝑀). A quite o-minimal 

theory is a weakly o-minimal theory for which the notions of quite ad weak 

orthogonality coincide for 1-types over arbitrary sets of structures of the given theory.  

 

It is obvious every ordered-minimal theory is a quite o-minimal theory. 

 

Definition 8.3 [73] Let we are given 𝑇 to be a weakly ordered-minimal theory, 

let 𝔐 be a sufficiently saturated structure of the theory 𝑇, and let the one-formula 

𝜑(𝑥) be arbitrary and 𝑀–definable. To define the convexity rank of the given formula 

𝜑(𝑥) (𝑅𝐶(𝜑(𝑥))) we use the following inductive construction: 

1) 𝑅𝐶(𝜑(𝑥)) ≥ 1 if 𝜑(𝑀) is infinite. 

2) 𝑅𝐶(𝜑(𝑥)) ≥ 𝛼 + 1  if there exist a parametrically definable equivalence 

relation 𝐸(𝑥, 𝑦) and an infinite sequence of elements 𝑏𝑖 , 𝑖 ∈ 𝜔, such that:   

    – For every 𝑖, 𝑗 ∈ 𝜔 whenever 𝑖 ≠ 𝑗 holds that 𝑀 ⊨ ¬𝐸(𝑏𝑖 , 𝑏𝑗); and  

    – For every 𝑖 ∈ 𝜔 𝑅𝐶(𝐸(𝑥, 𝑏𝑖)) ≥ 𝛼  and the set 𝐸(𝑀, 𝑏𝑖)  is a convex 

subset of 𝜑(𝑀).  

3) 𝑅𝐶(𝜑(𝑥)) ≥ 𝜇 if 𝑅𝐶(𝜑(𝑥)) ≥ 𝛼 for any 𝛼 < 𝜇 (𝜇 is limit). 

 

If for some element 𝛼 𝑅𝐶(𝜑(𝑥)) = 𝛼 then we say that the rank 𝑅𝐶(𝜑(𝑥)) is 

defined. Otherwise (that is if 𝑅𝐶(𝜑(𝑥)) ≥ 𝛼 for any 𝛼) we say 𝑅𝐶(𝜑(𝑥)) = ∞.  

In a particular case, a theory has the convexity rank 1 if there are no equivalence 

relations definable parametrically, which has an infinite number of infinite convex 

classes. It is obvious that any ordered-minimal theory has convexity rank 1. 

To give definition of the convexity rank of a one-type 𝑝 let us consider the 

following infimum: 

  

𝑅𝐶(𝑝): = inf{𝑅𝐶(𝜑(𝑥)) | 𝜑(𝑥) ∈ 𝑝}. 

 

We say that 𝑇 has exactly 𝜿 (less than 𝜿) countable models if it has 𝜅 (less 

than 𝜅) countable non-isomorphic structures. 

As it is known, in [10, P. 146] was solved the Vaught’s conjecture for ordered-

minimal theories. Recently in [11, P. 129] the Vaught’s conjecture for quite o-minimal 

theories was solved. From the above works it follows that these theories have the same 

spectrum, namely such a theory has either continuum of countable structures, or exactly 

6𝑙3𝑚 countable structures for non-negative integers 𝑙 and 𝑚. 

In the article [57, P. 1] B.S. Baizhanov and A. Alibek have constructed for any 

ordinal 𝜅 with 4 ≤ 𝜅 ≤ 𝜔 gave examples of weakly o-minimal theories which have 
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exactly 𝜅 countable structures up to an isomorphism. All these examples have the 

convexity rank 1. The aim of this section is to investigate the Vaught’s conjecture for 

weakly ordered-minimal theories of convexity rank 1, namely, to describe the 

countable spectrum of these theories (which already differs from the countable 

spectrum of ordered-minimal theories): 

 

Theorem 8.1 [74] Given a weakly o-minimal theory 𝑇 of a countable signature 

which has a convexity rank 1. Exactly one of the following possibilities holds: 

1) 𝑇 is countably categorical 

2) 𝑇 is Ehrenfeucht, namely 𝑇 has 𝑘 countable structures, where 3 ≤ 𝑘 < 𝜔 

3) 𝑇 has 𝜔 countable structures 

4) 𝑇 has 2𝜔 countable structures.  

 

In subsection 2 we will show that there are no so-called 𝑝-preserving convex to 

the right (left) sentences, whose sets of solutions are properly contained in the 

realization set of a non-algebraic 1-type over an empty set, in a weakly ordered-

minimal theory of convexity rank 1 having less than 2𝜔 countable structures (Lemma 

8.1.3). As a corollary we get that every non-algebraic type 𝑝 ∈ 𝑆1(∅) should be simple 

and binary. 

In subsection 3 will be proved orthogonality of a family of non-algebraic 1-types 

over the empty set which are pairwise weakly orthogonal (Theorem 8.2.1). In 

subsection 4 binarity of weakly ordered-minimal theories of the rank of convexity 1 

which have less than 2𝜔  countable structures will be showed (Theorem 8.3.1). In 

Section 5 sets of realizations of non-principal 1-types are investigated (Proposition 

8.4.2) and the proof of the main result (Theorem 8.1), that is the solution of Vaught’s 

conjecture for weakly o-minimal theories of convexity rank 1 will be given. 

Further in this section we will assume that there exists a large saturated structure 

which is said to be a monster model, for a given complete weakly ordered-minimal 

theory 𝑇 . We will be assuming that every structure under consideration (and 

particularly, every countable structure of the theory 𝑇) is an elementary substructure 

of the so-called monster model, and that each set is a subset of the universum of the 

monster model. 

Finally, let us note that if 𝑇 is a weakly ordered-minimal theory of a signature 𝐿 

and 𝐴 is a finite set, then 𝑇(𝐴): = 𝑇 ∪ {𝜑(𝑎̅)|𝜑(𝑥̅) is an 𝐿-formula, 𝑎̅ ∈ 𝐴, 𝔐 ⊨
𝜑(𝑎̅) for some 𝑀 ⊨ 𝑇 with 𝐴 ⊆ 𝑀}, a theory generated from 𝑇 by adding to the 

language 𝐿 constants for all the elements of the set 𝐴 is weakly ordered-minimal. 

Also, if the theory 𝑇 has less than 2𝜔 countable models, then the new theory 𝑇(𝐴) 

has less than 2𝜔 countable models as well. These observations allow us to generalize 

the results about one-types in 𝑆1(∅) to analogical results on types in 𝑆1(𝐴), for 𝐴 an 

arbitrary finite set. 

  

8.1 Behaviour of 2-formulas and binarity of 1-type  

 

For continuity of narration let us recall the following definitions. 
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Definition 8.1.1 [65, P. 7; 75] Let 𝔐 be a linearly ordered structure, let 𝐴 ⊆ 𝑀, 

𝑀 be |𝐴|+-saturated, and 𝑝 ∈ 𝑆1(𝐴) be non-algebraic. 

1) An 𝐴-definable two-formula 𝐹(𝑥, 𝑦) is called 𝒑-preserving (𝒑–stable) if 

there are such elements 𝛼 , 𝜆1 , 𝜆2 ∈ 𝑝(𝑀)  that 𝑝(𝑀) ∩ [𝐹(𝑀, 𝛼)\{𝛼}] ≠ ∅  and 

𝜆1 < 𝐹(𝑀, 𝛼) < 𝜆2. 

2) A 𝑝-preserving two-formula 𝐹(𝑥, 𝑦) is called convex to the right (convex to 

the left) if there is a realization 𝛼  ∈ 𝑝(𝑀) for which the set 𝑝(𝑀) ∩ 𝐹(𝑀, 𝛼) is 

convex, the realization 𝛼 is the left (the right) endpoint of 𝐹(𝑀, 𝛼), and 𝛼 ∈ 𝐹(𝑀, 𝛼). 

 

Definition 8.1.2 [76] A 𝑝-preserving convex to the right (to the left) two-formula 

𝐹(𝑥, 𝑦) is said to be an equivalence-generating formula, if for each realizations 

𝛼, 𝛽 ∈ 𝑝(𝑀)  with 𝑀 ⊨ 𝐹(𝛽, 𝛼)  we have the following: 𝑀 ⊨ ∀𝑥 (𝑥 ≥ 𝛽 →

(𝐹(𝑥, 𝛼) ↔ 𝐹(𝑥, 𝛽))) (𝑀 ⊨ ∀𝑥(𝑥 ≤ 𝛽 → (𝐹(𝑥, 𝛼) ↔ 𝐹(𝑥, 𝛽)))). 

  

Lemma 8.1.1 [76, P. 35] Let we are given a weakly ordered-minimal structure 

𝔐, a subset 𝐴 ⊆ 𝑀, and a non-algebraic type 𝑝 ∈ 𝑆1(𝐴) over 𝐴, also let 𝑀 to be 

|𝐴|+–saturated. Let 𝐹(𝑥, 𝑦) be a 𝑝-preserving convex to the right (convex to the left) 

formula which is equivalence-generating. Then 

1) 𝐺(𝑥, 𝑦): = 𝐹(𝑦, 𝑥) is a 𝑝-preserving convex to the left (convex to the right) 

formula which is also equivalence-generating. 

2) 𝐸(𝑥, 𝑦): = 𝐹(𝑥, 𝑦) ∨ 𝐹(𝑦, 𝑥)  is an equivalence relation partitioning 𝑝(𝑀) 

into infinitely many infinite convex classes.  

 

Lemma 8.1.2 [76, P. 35] Let we are given a weakly ordered-minimal theory 𝔐, 

a subset 𝐴 ⊆ 𝑀 , let 𝔐  be an |𝐴|+ –saturated structure, 𝑝 ∈ 𝑆1(𝐴)  be a non-

algebraic one-type, and 𝐹(𝑥, 𝑦) be a 𝑝-preserving convex to the right (convex to the 

left) two-formula. If 𝐹(𝑥, 𝑦) is not an equivalence-generating formula, then there are 

realizations 𝛼, 𝛽 ∈ 𝑝(𝑀) such that 𝑀 ⊨ 𝐹(𝛽, 𝛼) ∧ ∃𝑥[¬𝐹(𝑥, 𝛼) ∧ 𝐹(𝑥, 𝛽)]. 
 

Proposition 8.1.1 [11, P. 133] Let 𝑇 be a weakly ordered-minimal theory such 

that 𝐼(𝑇, 𝜔) < 2𝜔, let 𝔐 ⊨ 𝑇, 𝐴 be a finite subset of 𝑀, and the one-type 𝑝 ∈ 𝑆1(𝐴) 

be non-algebraic. Then every formula which is 𝑝-preserving convex to the right (to the 

left) is an equivalence-generating formula. 

 

 Proof of Proposition 8.1.1 Suppose that there is a 𝑝-preserving convex to the 

right (to the left) non-equivalence-generating two-formula 𝐹(𝑥, 𝑦) , then, by the 

Lemma 8.1.2 this formula is a quasi-successor on the type 𝑝. Then by Theorem 5.2.2 

𝑇 has 2𝜔 countable structures, contradicting the hypotheses of the proposition. 

           □ 

Lemma 8.1.3 [74, P. 1193] Let 𝑇  be a weakly ordered-minimal theory of 

convexity rank 1 having less than 2𝜔 countable structures, let 𝔐 ⊨ 𝑇, 𝐴 be a finite 

subset of 𝑀, 𝑝 ∈ 𝑆1(𝐴) be a non-algebraic one-type. Then there is no 𝑝-preserving 
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convex to the right (left) formulas.  

 

Proof of Lemma 8.1.3 Let us suppose, towards a contradiction, that there exists 

a formula 𝐹(𝑥, 𝑦)  which is 𝑝 -preserving convex to the right. If this formula is 

equivalence-generating, then by Lemma 8.1.1 we can define a relation of equivalence  

𝐸(𝑥, 𝑦): = 𝐹(𝑥, 𝑦) ∨ 𝐹(𝑦, 𝑥)  which partitions the realization set of 𝑝  in some 

structure of 𝑇 into infinitely many infinite equivalence classes which contradicts that 

theory 𝑇 has convexity rank 1. If 𝐹(𝑥, 𝑦) is not equivalence-generating, it contradicts 

Proposition 8.1.1. 

           □ 

Let we are given a subset 𝐴 ⊆ 𝑀, let 𝑝 ∈ 𝑆1(𝐴) be non-algebraic, 𝑛 ∈ 𝜔. A 

tuple 𝑎̅ = 〈𝑎1, 𝑎2, … , 𝑎𝑛〉 ∈ 𝑀𝑛 is said to be increasing if 𝑎1 < 𝑎2 < ⋯ < 𝑎𝑛. 

A type 𝑝(𝑀) is called to be 𝒏-indiscernible over 𝑨 if for any increasing 𝑛-

tuples 𝑎̅ = 〈𝑎1 , 𝑎2 , … , 𝑎𝑛〉 , 𝑎′̅ = 〈𝑎′1, 𝑎′2, … , 𝑎′𝑛〉 ∈ [𝑝(𝑀)]𝑛 , 𝑡𝑝(𝑎̅/𝐴) = 𝑡𝑝(𝑎′̅/
𝐴); the set 𝑝(𝑀) is said to be indiscernible over 𝑨 if for any natural 𝑛 ∈ 𝜔 𝑝(𝑀) 

is 𝑛-indiscernible over the set 𝐴. 

 

Lemma 8.1.4 [11, P. 137] Let we are given a weakly o-minimal theory 𝑇 such 

that 𝐼(𝑇, 𝜔) < 2𝜔, let 𝑝 ∈ 𝑆1(∅) be non-algebraic type such that 𝑅𝐶(𝑝) = 1. Then 

the set 𝑝(𝑀) is indiscernible over ∅.  

 

A function will be called non-trivial if it is neither a projection function nor the 

identity function. 

 

Definition 8.1.3 [10, P. 151] A type 𝑝 ∈ 𝑆1(∅) is called simple if for any 𝑛 ∈ 𝜔 

whenever 𝑓(𝑥1, … , 𝑥𝑛) is non-trivial ∅-definable, and 𝑎1, ..., 𝑎𝑛 realize the type 𝑝, 

then 𝑓(𝑎1, … , 𝑎𝑛) does not realize 𝑝. 

 

Definition 8.1.4 [77] Let we are given a one-type 𝑝 ∈ 𝑆1(𝐴)  which is non-

algebraic. The type 𝑝 is binary over the set 𝐴 if for each 𝑛 < 𝜔 and each increasing 

tuples 𝑏̅ = 〈𝑏1, … , 𝑏𝑛〉, and 𝑏′̅ = 〈𝑏′1, … , 𝑏′𝑛〉 from [𝑝(𝑀)]𝑛  with 𝑡𝑝(〈𝑏𝑖 , 𝑏𝑗〉/𝐴) =

𝑡𝑝(〈𝑏′𝑖 , 𝑏′𝑗〉/𝐴) for every 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, 𝑡𝑝(𝑏̅/𝐴) = 𝑡𝑝(𝑏′̅/𝐴). If the type 𝑝 ∈ 𝑆1(∅) 

is non-algebraic it is binary over the empty set, we say simply that the type 𝑝 is binary.  

 

Lemma 8.1.5 [11, P. 138] Given weakly ordered-minimal theory 𝑇 which has 

less than the maximal number of countable nonisomorphic structures, given a non-

algebraic binary one-type 𝑝 ∈ 𝑆1(∅). Then the type 𝑝 is simple.  

 

Corollary 8.1.1 [74, P. 1194] Let we are given a weakly o-minimal theory 𝑇 of 

convexity rank 1 with 𝐼(𝑇, 𝜔) < 2𝜔 . Then every non-algebraic type 𝑝 ∈ 𝑆1(∅) is 

simple and binary. 
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8.2 Orthogonality 

 

Lemma 8.2.1 [11, P. 139] Let 𝑇 be an arbitrary complete theory, 𝔐 ⊨ 𝑇, 𝐴 ⊆

𝑀 , 𝔐  be |𝐴|+ -saturated, 𝑚, 𝑛 < 𝜔 , 𝑎̅ = 〈𝑎1, … , 𝑎𝑚〉 , 𝑎′̅ = 〈𝑎′1, … , 𝑎′𝑚〉 ∈ 𝑀𝑚 , 

𝑏̅ = 〈𝑏1, … , 𝑏𝑛〉 , 𝑏′̅ = 〈𝑏′1, … , 𝑏′𝑛〉 ∈ 𝑀𝑛  such that 𝑡𝑝(𝑏̅/𝐴) = 𝑡𝑝(𝑏′̅/𝐴) , 

𝑡𝑝(〈𝑎𝑖 , 𝑏𝑗〉/𝐴) = 𝑡𝑝(〈𝑎′𝑖 , 𝑏′𝑗〉/𝐴) for all 1 ≤ 𝑖 ≤ 𝑚 , 1 ≤ 𝑗 ≤ 𝑛 , and 𝑡𝑝(〈𝑎̅, 𝑏̅𝑛−1〉/

𝐴) = 𝑡𝑝(〈𝑎′̅, 𝑏′̅𝑛−1〉/𝐴) . Then if 𝑡𝑝(〈𝑎̅, 𝑏̅〉/𝐴) ≠ 𝑡𝑝(〈𝑎′̅, 𝑏′̅〉/𝐴)  then there exists 

𝑏′′𝑛 ∈ 𝑀  for which 𝑡𝑝(𝑏̅𝑛−1, 𝑏𝑛〉/𝐴) = 𝑡𝑝(〈𝑏̅𝑛−1, 𝑏′′𝑛〉/𝐴) , 𝑡𝑝(〈𝑎𝑖 , 𝑏𝑛〉/𝐴)  =
𝑡𝑝(〈𝑎𝑖 , 𝑏′′𝑛〉/𝐴) for every 1 ≤ 𝑖 ≤ 𝑚, and 𝑡𝑝(〈𝑎̅, 𝑏̅𝑛−1, 𝑏𝑛〉/𝐴) ≠ 𝑡𝑝(〈𝑎̅, 𝑏̅𝑛−1, 𝑏′′𝑛〉/
𝐴).  

 

Lemma 8.2.2 [74, P. 1194] Given a weakly ordered-minimal theory 𝑇 which has 

a convexity rank 1 and such that 𝐼(𝑇, 𝜔) < 2𝜔, let 𝔐 ⊨ 𝑇, let 𝐴 be a finite subset of 

the universe of 𝔐, and let 𝑝, 𝑞 be non-algebraic weakly orthogonal types from 𝑆1(𝐴). 

Then for each realizations 𝑎, 𝑎′ ∈ 𝑝(𝑀),  𝑏1 < 𝑏2,  𝑏′1 < 𝑏′2 ∈ 𝑞(𝑀), 
𝑡𝑝(〈𝑎, 𝑏1, 𝑏2〉/𝐴) = 𝑡𝑝(〈𝑎′, 𝑏′1, 𝑏′2〉/𝐴) holds. 

 

Proof of Lemma 8.2.2 Suppose the contrary, that there are realizations 𝑎, 𝑎′ ∈ 

𝑝(𝑀) , 𝑏1 < 𝑏2, 𝑏′1 < 𝑏′2 ∈ 𝑞(𝑀)  such that 𝑡𝑝(〈𝑎, 𝑏1, 𝑏2〉/𝐴)  ≠  𝑡𝑝(〈𝑎′, 𝑏′1, 𝑏′2〉/
𝐴). Because 𝑝 and 𝑞 are weakly orthogonal types, we have that 

 

𝑡𝑝(〈𝑎, 𝑏1〉/𝐴) = 𝑡𝑝(〈𝑎′, 𝑏′1〉/𝐴) = 𝑡𝑝(〈𝑎, 𝑏2〉/𝐴) = 𝑡𝑝(〈𝑎′, 𝑏′2〉/𝐴). 
 

By the Lemma 8.2.1 there exists a realization 𝑏′′2 ∈ 𝑞(𝑀) such that 𝑡𝑝(〈𝑎, 𝑏2〉/
𝐴) = 𝑡𝑝(〈𝑎, 𝑏′′2〉/𝐴), 𝑏1 < 𝑏′′2 and 𝑡𝑝(〈𝑎, 𝑏1, 𝑏2〉/𝐴) ≠ 𝑡𝑝(〈𝑎, 𝑏1, 𝑏′′2〉/𝐴).  

Therefore, there is an 𝐴-definable formula 𝑅(𝑥, 𝑦, 𝑧) with 𝑀 ⊨ 𝑅(𝑎, 𝑏1, 𝑏2) ∧
¬𝑅(𝑎, 𝑏1, 𝑏′′2). By weak ordered-minimality we may assume the set 𝑅(𝑎, 𝑏1, 𝑀) to 

be convex. 

Denote 𝑞′: = 𝑡𝑝(𝑏1/𝐴 ∪ {𝑎}) . Because the types 𝑝  and 𝑞  are weakly 

orthogonal, 𝑞′(𝑀)  and 𝑞(𝑀)  are equal sets. Without loss of generality we can 

consider that 𝑏2 < 𝑏′′2. Now let us take the following formula: 

 

𝐹(𝑥, 𝑏1): = 𝑏1 ≤ 𝑥 ∧ ∃𝑦[𝑅(𝑎, 𝑏1, 𝑦) ∧ 𝑥 ≤ 𝑦]. 
 

It is easy to check that the formula 𝐹(𝑥, 𝑦) is a 𝑞′–preserving convex to the right 

formula. This contradicts Lemma 8.1.3.           

  □ 

 Following [70, P. 5435], 1.2, we will consider definable functions from M to its 

Dedekind completion 𝑀 , more precisely to sorts of 𝑀  representing infima or 

suprema. 

Let 𝐴, 𝐷 ⊆ 𝑀 , 𝐷  be infinite, 𝑍 ⊆ 𝑀  be an 𝐴–definable sort and a function 

𝑓: 𝐷 → 𝑍  be 𝐴 –definable. We call the function 𝑓  locally increasing (locally 

decreasing, locally constant) on the set 𝐷 if for every element 𝑎 belonging to 𝐷 
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there exists an interval 𝐽 ⊆ 𝐷 which is infinite and contains {𝑎} such that the function 

𝑓 strictly increases (strictly decreases, is constant) on the interval 𝐽. The function 𝑓 is 

said to be  locally monotonic on the set 𝐷 if it locally increases or locally decreases 

on the set 𝐷.  

 

Proposition 8.2.1 [78] Let we are given a weakly ordered-minimal model 𝔐, a 

subset 𝐴 ⊆ 𝑀 , and a non-algebraic one-type 𝑝 ∈ 𝑆1(𝐴) . Then any 𝐴 -definable 

function 𝑓  such that 𝑝(𝑀) ⊆ 𝐷𝑜𝑚(𝑓)  is either locally monotonic or is locally 

constant on the set 𝑝(𝑀).  

  

Corollary 8.2.1 [74, P. 1195] Let we are given be a weakly ordered-minimal 

model 𝔐 of a convexity rank 1, 𝐴 ⊆ 𝑀, let 𝑝 ∈ 𝑆1(𝐴) be non-algebraic. Then each 

𝐴-definable function 𝑓  such that 𝑝(𝑀) ⊆ 𝐷𝑜𝑚(𝑓) is either strictly monotonic or 

constant on 𝑝(𝑀).  

 

Take 𝐴 ⊆ 𝐵 ⊆ 𝑀, let 𝐵 be finite, and let 𝑝1, 𝑝2, … , 𝑝𝑠 ∈ 𝑆1(𝐴) be non-algebraic 

one-types. A family of 1-types {𝑝1, … , 𝑝𝑠} is called to be weakly orthogonal over the 

set 𝑩 if all 𝑠-tuples 〈𝑎1, … , 𝑎𝑠〉 ∈ 𝑝1(𝑀) × … × 𝑝𝑠(𝑀) satisfy the same type over the 

set 𝐵. We say that a family {𝑝1, … , 𝑝𝑠} of one-types is orthogonal over 𝑩 if for every 

sequence (𝑛1, … , 𝑛𝑠) ∈ 𝜔𝑠 , and every increasing tuples 𝑎̅1, 𝑎′̅1 ∈ [𝑝1(𝑀)]𝑛1 , … , 

𝑎̅𝑠, 𝑎′̅𝑠 ∈ [𝑝𝑠(𝑀)]𝑛𝑠  for which 𝑡𝑝(𝑎̅1/𝐵) = 𝑡𝑝(𝑎′̅1/𝐵) , … , 𝑡𝑝(𝑎̅𝑠/𝐵) = 𝑡𝑝(𝑎′̅𝑠/𝐵) , 

𝑡𝑝(〈𝑎̅1, … , 𝑎̅𝑠〉/𝐵) = 𝑡𝑝(〈𝑎′̅1, …, 𝑎′̅𝑠〉/𝐵) holds. 

 

Lemma 8.2.3 [74, P. 1195] Given a weakly ordered-minimal theory 𝑇  of a 

convexity rank 1 with 𝐼(𝑇, 𝜔) < 2𝜔, given a model 𝔐 ⊨ 𝑇, a finite subset 𝐴 ⊆ 𝑀, 

and nonalgebraic 𝑝1, 𝑝2, … , 𝑝𝑠 ∈ 𝑆1(𝐴) which are pairwise weakly orthogonal. Then 

the family {𝑝1, … , 𝑝𝑠} is weakly orthogonal over the set 𝐴. 

 

Proof of Lemma 8.2.3 The proof is done by induction on 𝑠 ≥ 2. The step when 

𝑠 = 2 is obvious. Now let us suppose that the condition of the lemma is established 

for sets with 𝑠 types, and let us prove it for sets with 𝑠 + 1 types, {𝑝1, … , 𝑝𝑠, 𝑝𝑠+1}. 

Towards the contradiction let {𝑝1, … , 𝑝𝑠+1} a non-weakly orthogonal family over the 

set 𝐴. Then there exist 𝑠 + 1-tuples 〈𝑎1, … , 𝑎𝑠, 𝑎𝑠+1〉, 〈𝑎′1, … , 𝑎′𝑠, 𝑎′𝑠+1〉 ∈ 𝑝1(𝑀) ×
… × 𝑝𝑠(𝑀) × 𝑝𝑠+1(𝑀) such that  

 

 𝑡𝑝(〈𝑎1, … , 𝑎𝑠, 𝑎𝑠+1〉/𝐴) ≠ 𝑡𝑝(〈𝑎′1, … , 𝑎′𝑠, 𝑎′𝑠+1〉/𝐴). 
 

Therefore, there is an 𝐴-definable formula 𝜑(𝑥1, … , 𝑥𝑠, 𝑥𝑠+1) with  

 

 𝑀 ⊨ 𝜑(𝑎1, … , 𝑎𝑠, 𝑎𝑠+1) ∧ ¬𝜑(𝑎′1, … , 𝑎′𝑠, 𝑎′𝑠+1). 
 

Lemma 8.2.1 implies that there is an element 𝑎′′𝑠+1 ∈ 𝑝𝑠+1(𝑀)  with 𝑀 ⊨
¬𝜑(𝑎1, … , 𝑎𝑠, 𝑎′′𝑠+1). Denote 𝑀′ = 〈𝑀, 𝐴, 𝑎1, … , 𝑎𝑠−2〉. It is obvious that 𝑇ℎ(𝔐′) is 
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still a weakly o-minimal theory of convexity rank 1, and it has less than 2𝜔 countable 

structures. The induction hypothesis ensures that 𝑝𝑠−1(𝑀) , 𝑝𝑠(𝑀)  and 𝑝𝑠+1(𝑀) 

remain 1-indiscernible in 𝑀′ , that is 𝑝𝑠−1 , 𝑝𝑠 , and 𝑝𝑠+1  have unique extensions 

𝑝′𝑠−1, 𝑝′𝑠 and 𝑝′𝑠+1 respectively to 1-types over the union 𝐴 ∪ {𝑎1, … , 𝑎𝑠−2}, and the 

types 𝑝′𝑠−1, 𝑝′𝑠, and 𝑝′𝑠+1 are pairwise weakly orthogonal. 

Let us rename 𝑝′𝑠−1 , 𝑝′𝑠 , and 𝑝′𝑠+1  by 𝑝1 , 𝑝2 , and 𝑝3 ; also rename 

𝜑(𝑎1, … , 𝑎𝑠−2, 𝑥𝑠−1, 𝑥𝑠, 𝑥𝑠+1) by 𝜑(𝑥1, 𝑥2, 𝑥3); and the constants 𝑎𝑠−1, 𝑎𝑠, 𝑎𝑠+1 and 

𝑎′′𝑠+1  by 𝑎1, 𝑎2, 𝑎3  and 𝑎′′3.  Thereby, we have 𝔐′ ⊨ 𝜑(𝑎1, 𝑎2, 𝑎3) ∧
¬𝜑(𝑎1, 𝑎2, 𝑎′′3), where 𝑎1 ∈ 𝑝1(𝑀′), 𝑎2 ∈ 𝑝2(𝑀′), 𝑎3, 𝑎′′3 ∈ 𝑝3(𝑀′). 

Without loss of generality we can let 𝑎3 < 𝑎′′3. By weak ordered-minimality we 

can consider 𝜑(𝑎1, 𝑎2, 𝑀′)  to be a convex set, and that for each 𝑎′3 ∈ 𝑝3(𝑀′) 

¬𝜑(𝑎1, 𝑎2, 𝑎′3) implies 𝜑(𝑎1, 𝑎2, 𝑀′) < 𝑎′3. 

Let us take 𝑓𝑎1
(𝑦): = sup (𝜑(𝑎1, 𝑦, 𝑀′)) , 𝑔𝑎2

(𝑥): = sup (𝜑(𝑥, 𝑎2, 𝑀′)) . If 

𝑓𝑎1
(𝑎2) ∈ 𝑀′ then 𝑓𝑎1

(𝑎′2) ∈ 𝑀′ for each 𝑎′2 ∈ 𝑝2(𝑀′) and  𝑓𝑎1
 is a function that 

maps 𝑝2(𝑀′)  to 𝑝3(𝑀′) . If 𝑓𝑎1
(𝑎2) ∈ 𝑀′  then 𝑓𝑎1

 is a definable function from 

𝑝2(𝑀′) to a definable sort 𝑍. Because 𝑝2(𝑀′) stays 1-indiscernible over {𝑎1}, 𝑓𝑎1
(𝑦) 

does not change its behavior on 𝑝2(𝑀′), and therefore by Corollary 8.2.1 it is either 

strictly increasing, strictly decreasing, or is constant on 𝑝2(𝑀′). If 𝑓𝑎1
(𝑦) is constant 

then 𝑝1 and 𝑝2 are not weakly orthogonal.  

Similarly, the same reasoning holds for 𝑝1(𝑀′) and 𝑔𝑎2
(𝑥). Because 𝑝1(𝑀′) is 

1-indiscernible in 𝑀′  over ∅ , then if the function 𝑓𝑎1
(𝑦)  is strictly increases on 

𝑝2(𝑀′)  then the function 𝑓𝑎′1
(𝑦)  is strictly increases on 𝑝2(𝑀′)  for each 𝑎′1 ∈

𝑝1(𝑀′). 

Case 1. The function 𝑓𝑎1
(𝑦) is strictly increases on the set 𝑝2(𝑀′). If 𝑔𝑎2

(𝑥) 

strictly increases on 𝑝1(𝑀′), we take 𝑏1 ∈ 𝑝1(𝑀′) with 𝑎1 < 𝑏1  and consider the 

formula 𝐹(𝑥, 𝑎2, 𝑎1, 𝑏1): = ∀𝑧[𝜑(𝑎1, 𝑎2, 𝑧) → 𝜑(𝑏1, 𝑥, 𝑧)] ∧ 𝑥 ≤ 𝑎2. 
Let 𝑝′2: = 𝑡𝑝(𝑎2/{𝑎1, 𝑏1}). By Lemma 8.2.2 𝑝′2(𝑀′) = 𝑝2(𝑀′) . And 

𝐹(𝑥, 𝑦, 𝑎1, 𝑏1) is 𝑝′2-preserving convex to left, it is a contradiction with Lemma 8.1.3. 

If 𝑔𝑎2
(𝑥) is strictly decreasing on 𝑝1(𝑀′) then we take 𝑏1 ∈ 𝑝1(𝑀′) such 𝑏1 <

𝑎1, and we have 𝐹(𝑥, 𝑦, 𝑎1, 𝑏1) to be also 𝑝′2-preserving convex to the left. 

Case 2. If the function 𝑓𝑎1
(𝑦) is strictly decreasing on 𝑝2(𝑀′). If 𝑔𝑎2

(𝑥) strictly 

increases on 𝑝1(𝑀′)  then take 𝑏1 ∈ 𝑝1(𝑀′)  for which 𝑎1 < 𝑏1  and consider the 

following formula: 𝐹(𝑥, 𝑎2, 𝑎1, 𝑏1): = ∀𝑧[𝜑(𝑎1, 𝑎2, 𝑧) → 𝜑(𝑏1, 𝑥, 𝑧)] ∧ 𝑎2 ≤ 𝑥.  In 

this case 𝐹(𝑥, 𝑦, 𝑎1, 𝑏1)  is a 𝑝′2 -preserving convex to the right formula, what 

contradicts with Lemma 8.1.3. 

If 𝑔𝑎2
(𝑥) strictly decreased on 𝑝1(𝑀′) then take 𝑏1 ∈ 𝑝1(𝑀′) for which 𝑏1 <

𝑎1, and we get that the function 𝐹(𝑥, 𝑦, 𝑎1, 𝑏1) is also 𝑝′2-preserving convex to the 

right. 

           □ 

Theorem 8.2.1 [74, P. 1195] Let a theory 𝑇 be weakly ordered-minimal of rank 

of convexity 1, and such that 𝐼(𝑇, 𝜔) < 2𝜔, let 𝑝1, … , 𝑝𝑚 ∈ 𝑆1(∅) be non-algebraic 

pairwise weakly orthogonal. Then the family {𝑝1, … , 𝑝𝑚} is orthogonal over ∅.  
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Proof of Theorem 8.2.1 We prove the theorem by induction on 𝑚 ≥ 2. 

Step 2. The proof is done by induction on (𝑛1, 𝑛2). We show that for each 

increasing 

 

𝑎̅ = 〈𝑎1, 𝑎2, … , 𝑎𝑛1
〉, 𝑎′̅ = 〈𝑎′1, 𝑎′2, … , 𝑎′𝑛1

〉 ∈ [𝑝1(𝑀)]𝑛1 , 

𝑏̅ = 〈𝑏1, 𝑏2, … , 𝑏𝑛2
〉, 𝑏′̅ = 〈𝑏′1, 𝑏′2, … , 𝑏′𝑛2

〉 ∈ [𝑝2(𝑀)]𝑛2 

 

such that 𝑡𝑝(𝑎̅/∅) = 𝑡𝑝(𝑎′̅/∅) , 𝑡𝑝(𝑏̅/∅) = 𝑡𝑝(𝑏′̅/∅)  the following statement 

holds: 𝑡𝑝(〈𝑎̅, 𝑏̅〉/∅) = 𝑡𝑝(〈𝑎′̅, 𝑏′̅〉/∅). The case (1,1) is trivial. Suppose that the step 

2 is established for every (𝑘1, 𝑘2) <𝑙𝑒𝑥 (𝑛1, 𝑛2) and let us prove it for (𝑛1, 𝑛2) with 

𝑛1 + 𝑛2 > 2.  

Towards a contradiction let us suppose that 𝑡𝑝(〈𝑎̅, 𝑏̅〉/∅) ≠ 𝑡𝑝(〈𝑎′̅, 𝑏′̅〉/∅). The 

weak orthogonality of the types 𝑝1  and 𝑝2  𝑡𝑝(〈𝑎𝑖 , 𝑏𝑗〉/∅) = 𝑡𝑝(〈𝑎′𝑖 , 𝑏′𝑗〉/∅) for 

each 1 ≤ 𝑖 ≤ 𝑛1 , 1 ≤ 𝑗 ≤ 𝑛2 . Then Lemma 8.2.1 implies that there exists 𝑏′′𝑛2
∈

𝑝2(𝑀) with 𝑡𝑝(〈𝑏̅𝑛2−1, 𝑏𝑛2
〉/∅) = 𝑡𝑝(〈𝑏̅𝑛2−1, 𝑏′′𝑛2

〉/∅), 𝑡𝑝(〈𝑎𝑖 , 𝑏𝑛2
〉/∅) =

𝑡𝑝(〈𝑎𝑖 , 𝑏′′𝑛2
〉/∅) for each index 1 ≤ 𝑖 ≤ 𝑛1 , and that 𝑡𝑝(〈𝑎̅, 𝑏̅𝑛2−1, 𝑏𝑛2

〉/∅) ≠

𝑡𝑝(〈𝑎̅, 𝑏̅𝑛2−1, 𝑏′′𝑛2
〉/∅). Now let 𝐴: = {𝑎̅𝑛1−1, 𝑏̅𝑛2−2}. By the induction hypothesis we 

have that 𝑡𝑝(〈𝑏𝑛2−1, 𝑏𝑛2
〉/𝐴) = 𝑡𝑝(〈𝑏𝑛2−1, 𝑏′′𝑛2

〉/𝐴). 

 Case 1. 𝑡𝑝(𝑏𝑛2−1/𝐴) = 𝑡𝑝(𝑏𝑛2
/𝐴) . Let 𝑝′1(𝑥): = 𝑡𝑝(𝑎𝑛1

/𝐴) , 𝑝′2(𝑦): =

𝑡𝑝(𝑏𝑛2−1/𝐴). By the inductional hypothesis 𝑝′1 ⊥𝑤 𝑝′2 and then, by Lemma 8.2.2 we 

have 𝑡𝑝(〈𝑎𝑛1
, 𝑏𝑛2−1, 𝑏𝑛2

〉/𝐴) = 𝑡𝑝(〈𝑎𝑛1
, 𝑏𝑛2−1, 𝑏′′𝑛2

〉/𝐴) which is impossible. 

 Case 2. If 𝑡𝑝(𝑏𝑛2−1/𝐴) ≠ 𝑡𝑝(𝑏𝑛2
/𝐴). Let 𝑝′1 and 𝑝′2 be as in the Case 1, and 

that 𝑝′3(𝑧): = 𝑡𝑝(𝑏𝑛2
/𝐴) . By the inductional hypothesis 𝑝′1 , 𝑝′2  and 𝑝′3  are 

pairwise weakly orthogonal. Therefore by Lemma 8.2.3 𝑡𝑝(〈𝑎𝑛1
, 𝑏𝑛2−1, 𝑏𝑛2

〉/𝐴) =

𝑡𝑝(〈𝑎𝑛1
, 𝑏𝑛2−1, 𝑏′′𝑛2

〉/𝐴) which also contradicts the assumption. 

 Step 𝑚. Let us suppose that the theorem is proved for sets of 𝑘 1-types for each 

𝑘 ≤ 𝑚 − 1 and let us prove it for sets of 𝑚 1-types. By Lemma 8.2.3 holds the case 

when 𝑛1 = 1, 𝑛2 = 1, … , 𝑛𝑚 = 1 . Suppose that the step 𝑚  holds for every 

(𝑘1, 𝑘2, … , 𝑘𝑚) <𝑙𝑒𝑥 (𝑛1, 𝑛2, … , 𝑛𝑚)  and prove it for (𝑛1, 𝑛2, … , 𝑛𝑚) . Let us take 

arbitrary increasing 𝑎̅𝑛1
∈ [𝑝1(𝑀)]𝑛1 , 𝑎̅𝑛2

∈ [𝑝2(𝑀)]𝑛2 , … , 𝑎̅𝑛𝑚−2
∈

[𝑝𝑚−2(𝑀)]𝑛𝑚−2 . The inductive hypothesis ensures that 𝑝𝑚−1 and 𝑝𝑚  have unique 

extensions to 𝑝′𝑚−1  and 𝑝′𝑚 , the types over {𝑎̅𝑛1
, 𝑎̅𝑛2

, … , 𝑎̅𝑛𝑚−2
} , that is, 

𝑝𝑚−1(𝑀) = 𝑝′𝑚−1(𝑀), 𝑝𝑚(𝑀) = 𝑝′𝑚(𝑀).  

Let 𝔐′ = 〈𝑀, 𝑎̅𝑛1
, 𝑎̅𝑛2

, …, 𝑎̅𝑛𝑚−2
〉. The hypothesis also proves that 𝑝′𝑚−1 and 

𝑝′𝑚 are weakly orthogonal in 𝑀′. By the Step 2 {𝑝′𝑚−1, 𝑝′𝑚} is an orthogonal family 

in 𝑀′ over the empty set, and consequently, {𝑝𝑚−1, 𝑝𝑚} is orthogonal over the set 

{𝑎̅𝑛1
, 𝑎̅𝑛2

, …, 𝑎̅𝑛𝑚−2
} in 𝑀. Since {𝑎̅𝑛1

, 𝑎̅𝑛2
, …, 𝑎̅𝑛𝑚−2

} have been taken arbitrarily, 

{𝑝1, … , 𝑝𝑚} is orthogonal over the empty set. 

           □ 
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8.3 Non-weakly orthogonal 1-types and binarity of the theory 

 

Further we will use the notion of a (𝑝, 𝑞)-splitting formula, which was given in 

[79] for principal non-algebraic one-types. Given a subset 𝐴 ⊆ 𝑀, let 𝑝, 𝑞 ∈ 𝑆1(𝐴) be 

non-algebraic types with 𝑝 ⊥𝑤 𝑞. Extending the notion of a (𝑝, 𝑞)-splitting formula to 

the non-principal case, we say that an 𝐴 -definable formula 𝜑(𝑥, 𝑦)  is a (𝑝, 𝑞)–
splitting formula if there exists 𝑎 ∈ 𝑝(𝑀)  such that 𝜑(𝑎, 𝑀) ∩ 𝑞(𝑀)  is convex, 

there exists a realization 𝑏 ∈ 𝑞(𝑀)  such that ¬𝜑(𝑎, 𝑏)  holds, and for every 𝑏 ∈
𝑞(𝑀)  with ¬𝜑(𝑎, 𝑏)  we have that 𝜑(𝑎, 𝑀) ∩ 𝑞(𝑀) < 𝑏 ,that is, [𝜑(𝑎, 𝑀) ∩
𝑞(𝑀)]− = 𝑞(𝑀)−. If 𝜑1(𝑥, 𝑦) and 𝜑2(𝑥, 𝑦) are (𝑝, 𝑞)-splitting formulas we say that 

the formula 𝜑1(𝑥, 𝑦) is less than the formula 𝜑2(𝑥, 𝑦) if there is such a realization 

𝑎 ∈ 𝑝(𝑀) that 𝜑1(𝑎, 𝑀) ∩ 𝑞(𝑀) ⊂ 𝜑2(𝑎, 𝑀) ∩ 𝑞(𝑀). It is easy to see that if 𝑝, 𝑞 ∈
𝑆1(𝐴) are non-algebraic one-types such that 𝑝 ⊥𝑤 𝑞, then there is a (𝑝, 𝑞)-splitting 

formula, and also the set of all the (𝑝, 𝑞)-splitting formulas is ordered linearly. It is 

also clear that for arbitrary (𝑝, 𝑞)-splitting formula 𝜑(𝑥, 𝑦) the function defined as 

𝑓(𝑥): = sup (𝜑(𝑥, 𝑀)) is not constant on the type 𝑝(𝑀). 

 

Lemma 8.3.1 [74, P. 1197] Let 𝑇  be a weakly ordered-minimal theory of 

convexity rank 1 having less than 2𝜔  countable structures, 𝑀 ⊨ 𝑇, 𝐴 ⊆ 𝑀, 𝐴 be 

finite, 𝑝1, 𝑝2 ∈ 𝑆1(𝐴) be non-algebraic one-types, and let 𝑝1 ⊥𝑤 𝑝2. Then 

1) If exists a realization 𝑎 ∈ 𝑝1(𝑀) with 𝑑𝑐𝑙(𝐴 ∪ {𝑎}) ∩ 𝑝2(𝑀) being empty, 

then there is only one (𝑝1, 𝑝2)-splitting formula. 

2) If exists a realization 𝑎 ∈ 𝑝1(𝑀) with 𝑑𝑐𝑙(𝐴 ∪ {𝑎}) ∩ 𝑝2(𝑀) ≠ ∅, then there 

are exactly two (𝑝1, 𝑝2)-splitting formulas 𝜑1(𝑥, 𝑦) and 𝜑2(𝑥, 𝑦) such that 𝜑1(𝑥, 𝑦) 

is less than 𝜑2(𝑥, 𝑦), and |[𝜑2(𝑎, 𝑀)\𝜑1(𝑎, 𝑀)] ∩ 𝑝2(𝑀)| = 1 for any 𝑎 ∈ 𝑝1(𝑀).  

 

 Proof of Lemma 8.3.1 1) Assume the contradiction: there are at least 2 (𝑝1, 𝑝2)-

splitting formulas 𝜑1(𝑥, 𝑦) and 𝜑2(𝑥, 𝑦), and suppose for simplicity that 𝜑1(𝑥, 𝑦) is 

less than the formula 𝜑2(𝑥, 𝑦). Then it is obvious that the set [𝜑2(𝑎, 𝑀)\𝜑1(𝑎, 𝑀)] ∩
𝑝2(𝑀) is infinite for any 𝑎 ∈ 𝑝1(𝑀). 

Consider an arbitrary 𝑏 ∈ 𝑝2(𝑀) with 𝑀 ⊨ 𝜑2(𝑎, 𝑏) ∧ ¬𝜑1(𝑎, 𝑏), and take the 

next formula: 𝐹(𝑥, 𝑏): = 𝑏 ≤ 𝑥 ∧ ∃𝑧[𝜑2(𝑧, 𝑏) ∧ ¬𝜑1(𝑧, 𝑏) ∧ ∀𝑡((𝜑2(𝑧, 𝑡) ∧
¬𝜑1(𝑧, 𝑡) ∧ 𝑏 ≤ 𝑡) → 𝑥 ≤ 𝑡)]. It is easy to see that 𝐹(𝑥, 𝑦) is a 𝑝2-preserving convex 

to the fight formula which contradicts Lemma 8.1.3. 

2) There is an 𝐴-definable function 𝑓: 𝑝1(𝑀) → 𝑝2(𝑀). It is each to show that 𝑓 

is a strictly monotonic bijection. Take arbitrary 𝑎 ∈ 𝑝1(𝑀). There exists 𝑏 ∈ 𝑝2(𝑀) 

with 𝑓(𝑎) = 𝑏 . Take the following formulas: 𝜑1(𝑎, 𝑦): = 𝑦 < 𝑓(𝑎), 𝜑2(𝑎, 𝑦): =
𝑦 ≤ 𝑓(𝑎). It is clear that 𝜑1(𝑥, 𝑦), 𝜑2(𝑥, 𝑦)  are (𝑝1, 𝑝2) -splitting, and also that 

[𝜑2(𝑎, 𝑀)\𝜑1(𝑎, 𝑀)] ∩ 𝑝2(𝑀) = {𝑏}. 
Analogical to the part 1) it can be shown that 𝑓 is unique and there exist no other 

(𝑝1, 𝑝2)-splitting formulas. 

           □ 

Lemma 8.3.2 [74, P. 1198] Given a weakly o-minimal theory 𝑇 of convexity rank 
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1 which has less than 2𝜔 models, let 𝔐 ⊨ 𝑇, 𝐴 ⊆ 𝑀, 𝐴 is finite, 𝑝1, 𝑝2, 𝑝3 ∈ 𝑆1(𝐴) 

are different non-algebraic types with 𝑝1 ⊥𝑤 𝑝2 , 𝑝2 ⊥𝑤 𝑝3 . Then for all 𝑎, 𝑎′ ∈
𝑝1(𝑀) , 𝑏, 𝑏′ ∈ 𝑝2(𝑀),  𝑐, 𝑐′ ∈ 𝑝3(𝑀)  such that 𝑡𝑝(〈𝑎, 𝑏〉/𝐴) = 𝑡𝑝(〈𝑎′, 𝑏′〉/
𝐴),𝑡𝑝(〈𝑎, 𝑐〉/𝐴) = 𝑡𝑝(〈𝑎′, 𝑐′〉/𝐴), 𝑡𝑝(〈𝑏, 𝑐〉/𝐴) = 𝑡𝑝(〈𝑏′, 𝑐′〉/𝐴) we have that 𝑡𝑝(〈𝑎, 

𝑏, 𝑐〉/𝐴) = 𝑡𝑝(〈𝑎′, 𝑏′, 𝑐′〉/𝐴).  

 

 Proof of Lemma 8.3.2 Let us assume the contrary. Therefore there are 𝑎, 𝑎′ ∈
𝑝1(𝑀) , 𝑏, 𝑏′ ∈ 𝑝2(𝑀) , 𝑐, 𝑐′ ∈ 𝑝3(𝑀)  satisfying the condition of the lemma, and 

𝑡𝑝(〈𝑎, 𝑏, 𝑐〉/𝐴) ≠ 𝑡𝑝(〈𝑎′, 𝑏′, 𝑐′〉/𝐴). Then by the Lemma 8.2.1 there is a realization 

𝑐′′ ∈ 𝑝3(𝑀) with 𝑡𝑝(〈𝑎, 𝑐〉/𝐴) = 𝑡𝑝(〈𝑎, 𝑐′′〉/𝐴), 𝑡𝑝(〈𝑏, 𝑐〉/𝐴) = 𝑡𝑝(〈𝑏, 𝑐′′〉/𝐴), and 

𝑡𝑝(〈𝑎, 𝑏, 𝑐〉/𝐴) ≠ 𝑡𝑝(〈𝑎, 𝑏, 𝑐′′〉/𝐴). Then, there exists formula 𝑅(𝑥, 𝑦, 𝑧) which is an 

𝐴-definable and for which 𝔐 ⊨ 𝑅(𝑎, 𝑏, 𝑐) ∧ ¬𝑅(𝑎, 𝑏, 𝑐′′). 

Now we prove that 𝑎, 𝑏, and 𝑐 are pairwise algebraically independent over 𝐴. 

Otherwise if for example 𝑏 ∈ 𝑑𝑐𝑙(𝐴 ∪ {𝑎}) , then there should be an 𝐴 -definable 

formula 𝜃(𝑥, 𝑦) with 𝑀 ⊨ 𝜃(𝑎, 𝑏) ∧ ∃! 𝑦𝜃(𝑎, 𝑦). Take the following formula: 

  

𝑅′(𝑥, 𝑧): = ∀𝑦[𝜃(𝑥, 𝑦) → 𝑅(𝑥, 𝑦, 𝑧)]. 
 

Then 𝔐 ⊨ 𝑅′(𝑎, 𝑐) ∧ ¬𝑅′(𝑎, 𝑐′′), which is a contradiction with 𝑡𝑝(〈𝑎, 𝑐〉/𝐴) =
𝑡𝑝(〈𝑎, 𝑐′′〉/𝐴). 

Without loss of generality suppose that 𝑐 < 𝑐′′. Then, changing if necessary, by 

weak ordered-minimality we may think that 𝑅(𝑎, 𝑏, 𝑀) is a convex set, and for any 

𝑐′ ∈ 𝑝3(𝑀) ¬𝑅(𝑎, 𝑏, 𝑐′) implies 𝑅(𝑎, 𝑏, 𝑀) ∩ 𝑝3(𝑀) < 𝑐′. 
Let 𝜑13(𝑥, 𝑦) be a (𝑝1, 𝑝3)-splitting formula, 𝜑23(𝑥, 𝑦) be a (𝑝2, 𝑝3)-splitting 

formula. Then either 𝜑13(𝑎 , 𝑀) ∩ 𝑝3(𝑀) ⊆ 𝜑23(𝑏, 𝑀) ∩ 𝑝3(𝑀), or 𝜑23(𝑏, 𝑀) ∩
𝑝3(𝑀) ⊂ 𝜑13(𝑎, 𝑀) ∩ 𝑝3(𝑀) . If 𝜑13(𝑎, 𝑀) ∩ 𝑝3(𝑀) = 𝜑23(𝑏, 𝑀) ∩ 𝑝3(𝑀) , then 

strict monotonicity of the function 𝛿23(𝑥): = sup𝜑23(𝑥, 𝑀) on 𝑝2(𝑀) implies that 

𝑏 ∈ 𝑑𝑐𝑙(𝐴 ∪ {𝑎})  which contradicts our assumption. If |[𝜑23(𝑏, 𝑀)\𝜑13(𝑎, 𝑀)] ∩
𝑝3(𝑀)| = 1, or |[𝜑13(𝑎, 𝑀)\𝜑23(𝑏, 𝑀)] ∩ 𝑝3(𝑀)| = 1, then we can also see that 𝑏 ∈
𝑑𝑐𝑙(𝐴 ∪ {𝑎}) . Suppose that 𝜑13(𝑎, 𝑀) ∩ 𝑝3(𝑀) ⊂ 𝜑23(𝑏, 𝑀) ∩ 𝑝3(𝑀) . Then 

|[𝜑23(𝑏, 𝑀)\𝜑13(𝑎, 𝑀)] ∩ 𝑝3(𝑀)| > 1. Because 𝑡𝑝(〈𝑎, 𝑐〉/𝐴) = 𝑡𝑝(〈𝑎, 𝑐′′〉/𝐴), then 

either 𝑐, 𝑐′′ ∈ 𝜑13(𝑎, 𝑀), or 𝑐, 𝑐′′ ∈ ¬𝜑13(𝑎, 𝑀). Without loss of generality suppose 

the first. case Let 𝑝′1: = 𝑡𝑝(𝑎/𝐴 ∪ {𝑏}), 𝑝′3: = 𝑡𝑝(𝑐/𝐴 ∪ {𝑏}). It is clear that 𝑝′1 is 

not weakly orthogonal to the type 𝑝′3, and that 𝑅(𝑥, 𝑏, 𝑧), 𝜑13(𝑥, 𝑧) are (𝑝′1, 𝑝′3)-

splitting formulas, moreover |[𝜑13(𝑎, 𝑀)\𝑅(𝑎, 𝑏, 𝑀)] ∩ 𝑝3(𝑀)| > 1  which 

contradicts Lemma 8.3.1. The case when 𝜑23(𝑏, 𝑀) ∩ 𝑝3(𝑀) ⊂ 𝜑13(𝑎, 𝑀) ∩ 𝑝3(𝑀) 

can be considered analogically. 

           □ 

Lemma 8.3.3 [74, P. 1199] Given be a weakly ordered-minimal theory 𝑇 of 

convexity rank 1 which has less than 2𝜔 models of countable cardinality, 𝔐 ⊨ 𝑇, 

𝐴 ⊆ 𝑀 , 𝐴  finite, 𝑝1, 𝑝2, 𝑝3 ∈ 𝑆1(𝐴)  non-algebraic distinct types. Then for each 

𝑎, 𝑎′ ∈ 𝑝1(𝑀) , 𝑏, 𝑏′ ∈ 𝑝2(𝑀) , 𝑐, 𝑐′ ∈ 𝑝3(𝑀)  such that 𝑡𝑝(〈𝑎, 𝑏〉/𝐴) = 𝑡𝑝(〈𝑎′, 𝑏′〉/
𝐴) , 𝑡𝑝(〈𝑎, 𝑐〉/𝐴) = 𝑡𝑝(〈𝑎′, 𝑐′〉/𝐴) , and 𝑡𝑝(〈𝑏, 𝑐〉/𝐴) = 𝑡𝑝(〈𝑏′, 𝑐′〉/𝐴)  it holds that 
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𝑡𝑝(〈𝑎, 𝑏, 𝑐〉/𝐴) = 𝑡𝑝(〈𝑎′, 𝑏′, 𝑐′〉/𝐴).  

 

Proof of Lemma 8.3.3 If 𝑝1, 𝑝2, and 𝑝3 were pairwise weakly orthogonal then 

the proof follows from Lemma 8.3.2. If 𝑝1, 𝑝2, and 𝑝3 are not weakly orthogonal then 

the proof is implied by Lemma 8.3.2. So we suppose that 𝑝1 ⊥𝑤 𝑝2, but 𝑝2 ⊥𝑤 𝑝3. 

Then 𝑝1 ⊥𝑤 𝑝3, in other case we get 𝑝1 ⊥𝑤 𝑝2. Suppose that the result of the Lemma 

8.3.3 is not true, therefore there exist 𝑎, 𝑎′ ∈ 𝑝1(𝑀), 𝑏, 𝑏′ ∈ 𝑝2(𝑀), 𝑐, 𝑐′ ∈ 𝑝3(𝑀) 

satisfying the condition of the lemma, and there is an 𝐴-definable formula 𝑅(𝑥, 𝑦, 𝑧) 

such that 𝔐 ⊨ 𝑅(𝑎, 𝑏, 𝑐) ∧ ¬𝑅(𝑎′, 𝑏′, 𝑐′). By Lemma 8.2.1 there is such a realization 

𝑐′′ ∈ 𝑝3(𝑀)  for which 𝑡𝑝(〈𝑎, 𝑐〉/𝐴) = 𝑡𝑝(〈𝑎, 𝑐′′〉/𝐴), 𝑡𝑝(〈𝑏, 𝑐〉/𝐴) = 𝑡𝑝(〈𝑏, 𝑐′′〉/
𝐴) and 𝔐 ⊨ ¬𝑅(𝑎, 𝑏, 𝑐′′).   

Similarly to the proof of Lemma 8.3.2 we can see that 𝑎, 𝑏, and 𝑐 are pairwise 

independent over the set 𝐴. Without loss of generality let us suppose that 𝑐 < 𝑐′′. 
Changing, if it is necessary, by weak ordered-minimality we consider the set 

𝑅(𝑎, 𝑏, 𝑀)  to be a convex, and that for each realization 𝑐′ ∈ 𝑝3(𝑀) , ¬𝑅(𝑎, 𝑏, 𝑐′) 

implies 𝑅(𝑎, 𝑏, 𝑀) ∩ 𝑝3(𝑀) < 𝑐′. 
Let 𝑝′2: = 𝑡𝑝(𝑏/𝐴 ∪ {𝑎}), 𝑝′3: = 𝑡𝑝(𝑐/𝐴 ∪ {𝑎}). Therefore 𝑝2(𝑀) = 𝑝′2(𝑀), 

𝑝3(𝑀) = 𝑝′3(𝑀), then 𝑅(𝑎, 𝑦, 𝑧) is (𝑝′2, 𝑝′3)-splitting. Since  𝑝2  and 𝑝3  are not 

weakly orthogonal, there exist a (𝑝2, 𝑝3)–splitting formula 𝜑23(𝑥, 𝑦). You can also 

see that it is a (𝑝′2, 𝑝′3) –splitting formula as well. Because 𝑡𝑝(〈𝑏, 𝑐〉/𝐴) =
𝑡𝑝(〈𝑏, 𝑐′′〉/𝐴) we have that either 𝑐, 𝑐′′ ∈ 𝜑23(𝑏, 𝑀), or 𝑐, 𝑐′′ ∈ ¬𝜑23(𝑏, 𝑀). Let us 

suppose the first case. Then 𝑅(𝑎, 𝑏, 𝑀) ∩ 𝑝3(𝑀) ⊂ 𝜑23(𝑏, 𝑀) ∩ 𝑝3(𝑀) , also 

|[𝜑23(𝑏, 𝑀)\𝑅(𝑎, 𝑏, 𝑀)] ∩ 𝑝3(𝑀)| > 1, what contradicts to Lemma 8.3.1. The case 

when 𝑝1 ⊥𝑤 𝑝2, 𝑝2 ⊥𝑤 𝑝3 can be shown analogically. 

 □ 

Lemma 8.3.4 [74, P. 1199] Let 𝑇  be a weakly ordered-minimal theory of 

convexity rank 1 having less than 2𝜔  countable models up to an isomorphism, let 

𝔐 ⊨ 𝑇, 𝐴 ⊆ 𝑀, the set 𝐴 be finite, 𝑝1, 𝑝2 ∈ 𝑆1(𝐴) be non-algebraic one-types over 

𝐴 , and 𝑝1 ⊥𝑤 𝑝2 . Then for each realizations 𝑎, 𝑎′ ∈ 𝑝1(𝑀) , 𝑏1 < 𝑏2, 𝑏′1 < 𝑏′2 ∈
𝑝2(𝑀)  for which 𝑡𝑝(〈𝑎, 𝑏1〉/𝐴) = 𝑡𝑝(〈𝑎′, 𝑏′1〉/𝐴) , and 𝑡𝑝(〈𝑎, 𝑏2〉/𝐴)  =
𝑡𝑝(〈𝑎′, 𝑏′2〉/𝐴) we have that 𝑡𝑝(〈𝑎, 𝑏1, 𝑏2〉/𝐴) = 𝑡𝑝(〈𝑎′, 𝑏′1, 𝑏′2〉/𝐴). 

 

Proof of Lemma 8.3.4 Towards the contradiction suppose that there exists an 𝐴–

definable three-formula 𝑅(𝑥, 𝑦, 𝑧) such that 𝔐 ⊨ 𝑅(𝑎, 𝑏1, 𝑏2) ∧ ¬𝑅(𝑎′, 𝑏′1, 𝑏′2) for 

some realizations 𝑎, 𝑎′ ∈ 𝑝1(𝑀) , 𝑏1 < 𝑏2, 𝑏′1 < 𝑏′2 ∈ 𝑝2(𝑀)  for which the 

following holds: 

  

𝑡𝑝(〈𝑎, 𝑏1〉/𝐴) = 𝑡𝑝(〈𝑎′, 𝑏′1〉/𝐴), and 𝑡𝑝(〈𝑎, 𝑏2〉/𝐴) = 𝑡𝑝(〈𝑎′, 𝑏′2〉/𝐴). 

 

By Lemma 8.2.1 there exists such a realization 𝑏′′2 ∈ 𝑝2(𝑀)  that  𝑏1 <

𝑏′′
2, 𝑡𝑝 (

〈𝑎,𝑏2〉

𝐴
) = 𝑡𝑝 (

〈𝑎,𝑏′′
2〉

𝐴
) , and 𝔐 ⊨ ¬𝑅(𝑎, 𝑏1, 𝑏′′2).  

By analogy with the proof of Lemma 8.3.2 it can be established that the elements 

𝑎, 𝑏1 and 𝑏2 are pairwise algebraically independent over 𝐴. 
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Let 𝑝′1(𝑥): = 𝑡𝑝(𝑎/𝐴 ∪ {𝑏1}) , 𝑝′2(𝑥): = 𝑡𝑝(𝑏1/𝐴 ∪ {𝑎}) , and 𝑝′′2(𝑥): =
𝑡𝑝(𝑏2/𝐴 ∪ {𝑎}). 

Case 1. 𝑝′2 = 𝑝′′2. Let us suppose that 𝑏2 < 𝑏′′2. By weak ordered-minimality 

we may consider 𝑅(𝑎, 𝑏1, 𝑀) to be convex. Then consider the formula:  

 

 𝐹(𝑥, 𝑏1): = 𝑏1 ≤ 𝑥 ∧ ∃𝑡[𝑅(𝑎, 𝑏1, 𝑡) ∧ 𝑥 ≤ 𝑡]. 
 

We can easily check that 𝐹(𝑥, 𝑦) is a 𝑝′2-preserving convex to the right formula. 

Then we have a contradiction with Lemma 8.1.3. 

 Case 2. 𝑝′2 ≠ 𝑝′′2. Because 𝑝1 ⊥𝑤 𝑝2, there exists a (𝑝1, 𝑝2)–splitting formula 

𝜑(𝑥, 𝑦), and because 𝑝′2 ≠ 𝑝′′2, we have 𝑀 ⊨ 𝜑(𝑎, 𝑏1) ∧ ¬𝜑(𝑎, 𝑏2). 

Because the function defined as 𝛿(𝑥): = sup𝜑(𝑥, 𝑀) is strictly monotone on the 

set 𝑝1(𝑀) , there is 𝑎1 ∈ 𝑝1(𝑀)  with the condition 𝔐 ⊨ 𝑎 < 𝑎1 ∧ 𝜑(𝑎1, 𝑏1) ∧
¬𝜑(𝑎1, 𝑏2).   

Now let us consider the functions: 𝛿(𝑥): = sup𝜑(𝑥, 𝑀) , 𝑓𝑎(𝑦): =
sup𝑅(𝑎, 𝑦, 𝑀), and 𝑔𝑏1

(𝑥) : = sup𝑅(𝑥, 𝑏1, 𝑀). 

Subcase 2a. 𝛿 is strictly decreases on 𝑝1(𝑀). 

Let us suppose that the function 𝑓𝑎(𝑦)  strictly increases on 𝑝′2(𝑀) . If the 

function 𝑔𝑏1
(𝑥) strictly increases on 𝑝′1(𝑀) as well, we take 𝑎1 ∈ 𝑝1(𝑀) for which 

𝑀 ⊨ 𝑎 < 𝑎1 ∧ 𝜑(𝑎1, 𝑏1) ∧ ¬𝜑(𝑎1, 𝑏2) . Then 𝜑(𝑎1, 𝑀) ∩ 𝑝2(𝑀) ⊂ 𝜑(𝑎, 𝑀) ∩
𝑝2(𝑀). Now let us take the next formulas:  

 

   Φ1(𝑦, 𝑏1, 𝑎, 𝑎1): = 𝜑(𝑎1, 𝑦) ∧ 𝑦 ≤ 𝑏1 ∧ ∀𝑧[𝑅(𝑎, 𝑏1, 𝑧) → 𝑅(𝑎1, 𝑦, 𝑧)] 
Φ𝑛(𝑦, 𝑏1, 𝑎, 𝑎1): = 𝜑(𝑎1, 𝑦) ∧ 𝑦 ≤ 𝑏1 ∧ ∀𝑦1∀𝑧[¬Φ𝑛−1(𝑦1, 𝑏1, 𝑎, 𝑎1) ∧ 

𝜑(𝑎1, 𝑦1) ∧ 𝑦1 ≤ 𝑏1 ∧ 𝑅(𝑎, 𝑦1, 𝑧) → 𝑅(𝑎1, 𝑦, 𝑧)], 𝑛 ≥ 2. 
 

Then the following holds: Φ1(𝑀, 𝑏1, 𝑎, 𝑎1) ⊂ Φ2(𝑀, 𝑏1, 𝑎, 𝑎1) ⊂ ⋯ ⊂
Φ𝑛(𝑀, 𝑏1, 𝑎, 𝑎1) ⊂ ⋯. 

 Consider the family of formulas: 𝑝′2(𝑦) ∪ {𝑦 < 𝑏1} ∪ {¬Φ𝑛(𝑦, 𝑏1, 𝑎, 𝑎1)|𝑛 ∈
𝜔}. This set is locally consistent, and because of that there is 𝑞 ∈ 𝑆1(𝐴 ∪ {𝑎, 𝑎1, 𝑏1}) 

which extends this set of formulas, and which is non-isolated. Then 𝑇(𝐴 ∪ {𝑎, 𝑎1, 𝑏1}) 

has 2𝜔 countable structures which contradicts the hypotheses of the lemma. 

If 𝑔𝑏1
(𝑥) is strictly decreasing on 𝑝′1(𝑀) then take 𝑎1 ∈ 𝑝1(𝑀) such that   

 

𝔐 ⊨ 𝑎 > 𝑎1 ∧ 𝜑(𝑎1, 𝑏1) ∧ ¬𝜑(𝑎1, 𝑏2). 
 

Considering the same formulas Φ𝑛(𝑦, 𝑏1, 𝑎, 𝑎1) , we will obtain a similar 

contradiction. 

Let us suppose that the function 𝑓𝑎(𝑦) is strictly decreases on 𝑝′2(𝑀). If the 

function 𝑔𝑏1
(𝑥)  is strictly increasing on 𝑝′1(𝑀)  then take 𝑎1 ∈ 𝑝1(𝑀)  such that 

𝑀 ⊨ 𝑎 < 𝑎1 ∧ 𝜑(𝑎1, 𝑏1) ∧ ¬𝜑(𝑎1, 𝑏2). In this case we replace 𝑦 ≤ 𝑏1  in formulas 

Φ𝑛(𝑦, 𝑏1, 𝑎, 𝑎1)  by 𝑦 ≥ 𝑏1 , and we also obtain that Φ1(𝑀, 𝑏1, 𝑎, 𝑎1) ⊂
Φ2(𝑀, 𝑏1, 𝑎, 𝑎1) ⊂ ⋯ ⊂ Φ𝑛(𝑀, 𝑏1, 𝑎, 𝑎1) ⊂ ⋯  Next we take the next family 
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formulas:  𝑝′2(𝑦) ∪ {𝑦 > 𝑏1 ∧ 𝜑(𝑎1, 𝑦)} ∪ {¬Φ𝑛(𝑦, 𝑏1, 𝑎, 𝑎1)|𝑛 ∈ 𝜔}. It can be also 

seen that 𝑇(𝐴 ∪ {𝑎, 𝑎1, 𝑏1}) has 2𝜔 countable structures contradicting the hypotheses 

of Lemma 8.3.4. 

Subcase 2b. The function 𝛿 is strictly increasing on 𝑝1(𝑀). 

Without loss of generality suppose that the functions 𝑓𝑎(𝑦) and 𝑔𝑏1
(𝑥) are both 

strictly increasing on 𝑝′2(𝑀) and 𝑝′1(𝑀) respectively (the other cases can be handled 

in a similar way). Let 𝑎1 ∈ 𝑝1(𝑀) be an arbitrary element such that 𝑀 ⊨ 𝑎 < 𝑎1 ∧
𝜑(𝑎1, 𝑏1) ∧ ¬𝜑(𝑎1, 𝑏2) . Therefore we have the following: 𝜑(𝑎, 𝑀) ∩ 𝑝2(𝑀) ⊂
𝜑(𝑎1, 𝑀) ∩ 𝑝2(𝑀). 

Further in the formulas Φ𝑛(𝑦, 𝑏1, 𝑎, 𝑎1) we replace 𝜑(𝑎1, 𝑦) and 𝜑(𝑎1, 𝑦1) by 

𝜑(𝑎, 𝑦) and 𝜑(𝑎, 𝑦1) respectively. 

Let for any 𝑖 ≥ 1 

 

𝐵𝑖(𝑏1, 𝑎, 𝑎1, 𝑧) ≔ ∃𝑦1[¬Φ𝑖(𝑦1, 𝑏1, 𝑎, 𝑎1) ∧ 𝜑(𝑎, 𝑦1) ∧ 𝑅(𝑎, 𝑦1, 𝑧)]. 
 

Suppose that we have already proved that  

 

Φ1(𝑀, 𝑏1, 𝑎, 𝑎1) ⊂ Φ2(𝑀, 𝑏1, 𝑎, 𝑎1) ⊂ ⋯ ⊂ Φ𝑖(𝑀, 𝑏1, 𝑎, 𝑎1). 
 

Step i. Consider sup 𝐵𝑖(𝑏1, 𝑎, 𝑎1, 𝑀) . If sup (𝐵𝑖(𝑏1, 𝑎, 𝑎1, 𝑀)) >
sup (𝜑(𝑎1, 𝑀)) , then we obtain that Φ𝑖(𝑀, 𝑏1, 𝑎, 𝑎1) ⊂ Φ𝑖+1(𝑀, 𝑏1, 𝑎, 𝑎1)  and we 

move to step 𝑖 + 1 . Suppose that sup𝐵𝑖(𝑏1, 𝑎, 𝑎1, 𝑀) ≤ sup𝜑(𝑎1, 𝑀) . Because 

sup𝜑(𝑎, 𝑀) < sup𝐵𝑖(𝑏1, 𝑎, 𝑎1, 𝑀), then due to 𝛿 being strictly increasing, there is a 

realization 𝑎1
𝑖 ∈ 𝑝1(𝑀)  located in the interval 𝑎 < 𝑎1

𝑖 < 𝑎1 , and sup𝜑(𝑎1
𝑖 , 𝑀) <

sup𝐵𝑖(𝑏1, 𝑎, 𝑎1, 𝑀). It is not hard to see that Φ𝑗(𝑀, 𝑏1, 𝑎, 𝑎1
𝑖 ) ⊂ Φ𝑗(𝑀, 𝑏1, 𝑎, 𝑎1) for 

every 1 ≤ 𝑗 ≤ 𝑖 , that is infΦ𝑗(𝑀, 𝑏1, 𝑎, 𝑎1
𝑖 ) > infΦ𝑗(𝑀, 𝑏1, 𝑎, 𝑎1) , and therefore 

sup𝐵𝑗(𝑏1, 𝑎, 𝑎1
𝑖 , 𝑀) > sup𝐵𝑗(𝑏1, 𝑎, 𝑎1, 𝑀) for any 1 ≤ 𝑗 ≤. Thus, we have 

 

Φ1(𝑀, 𝑏1, 𝑎, 𝑎1
𝑖 ) ⊂ Φ2(𝑀, 𝑏1, 𝑎, 𝑎1

𝑖 ) ⊂ ⋯ ⊂ Φ𝑖+1(𝑀, 𝑏1, 𝑎, 𝑎1
𝑖 ). 

 

Let us change for simplicity our notation, replace 𝑎1
𝑖  by 𝑎1 and move to the step 

𝑖 + 1. Thus, for each 𝑛 ∈ 𝜔 we can construct a chain of length 𝑛: Φ1(𝑀, 𝑏1, 𝑎, 𝑎1) ⊂
Φ2(𝑀, 𝑏1, 𝑎, 𝑎1) ⊂ ⋯ ⊂ Φ𝑛(𝑀, 𝑏1, 𝑎, 𝑎1).   

Therefore we also obtain that 𝑇(𝐴 ∪ {𝑎, 𝑎1, 𝑏1}) has 2𝜔  countable structures, 

contradicting the statement of the lemma. 

           □ 

Lemma 8.3.5 [74, P. 1201] Let 𝑇 be a weakly o-minimal theory of convexity rank 

1 which has less than 2𝜔  countable models, 𝑀 ⊨ 𝑇, 𝐴 ⊆ 𝑀, 𝐴 be finite, 𝑝1, 𝑝2 ∈
𝑆1(𝐴) be non-algebraic one-types over 𝐴, and 𝑝1 be non-weakly orthogonal to 𝑝2. 

Then for every 𝑛1, 𝑛2 < 𝜔  and every increasing 𝑎̅ = 〈𝑎1, 𝑎2, … , 𝑎𝑛1
〉 , 𝑎′̅ =

〈𝑎′1, 𝑎′2, … , 𝑎′𝑛1
〉 ∈ [𝑝1(𝑀)]𝑛1 , 𝑏̅ = 〈𝑏1, 𝑏2, … , 𝑏𝑛2

〉 , 𝑏′̅ = 〈𝑏′1, 𝑏′2, … , 𝑏′𝑛2
〉 ∈

[𝑝2(𝑀)]𝑛2  for each 𝑖  and 𝑗  such that 1 ≤ 𝑖 ≤ 𝑛1 , 1 ≤ 𝑗 ≤ 𝑛2  𝑡𝑝(〈𝑎𝑖 , 𝑏𝑗〉/𝐴) =
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𝑡𝑝(〈𝑎′𝑖 , 𝑏′𝑗〉/𝐴) the following holds: 𝑡𝑝(〈𝑎̅, 𝑏̅〉/𝐴) = 𝑡𝑝(〈𝑎′̅, 𝑏′̅〉/𝐴).  

 

Proof of Lemma 8.3.5 The proof of the lemma is done by induction on (𝑛1, 𝑛2). 

The step (1,1) is obvious. Now let us suppose that Lemma 8.3.5 is true for all (𝑘1, 𝑘2) 

such that (𝑘1, 𝑘2) <𝑙𝑒𝑥 (𝑛1, 𝑛2). Let us prove the lemma for the case (𝑛1, 𝑛2) with 

𝑛1 + 𝑛2 > 2. Suppose the contrary: there exist an 𝐴–definable formula 𝑅(𝑥̅, 𝑦̅) and 

increasing tuples 𝑎̅, 𝑎′̅ ∈ [𝑝1(𝑀)]𝑛1 , 𝑏̅, 𝑏′̅ ∈ [𝑝2(𝑀)]𝑛2  satisfying the hypotheses of 

the lemma, and such that 

 

𝑀 ⊨ 𝑅(𝑎̅, 𝑏̅) ∧ ¬𝑅(𝑎′̅, 𝑏′̅). 

 

Therefore by Lemma 8.2.1 there exists 𝑏′′𝑛2
∈ 𝑝2(𝑀) for which 𝑏𝑛2−1 < 𝑏′′𝑛2

, 

𝑡𝑝(〈𝑎𝑖 , 𝑏𝑛2
〉/𝐴) = 𝑡𝑝(〈𝑎𝑖 , 𝑏′′𝑛2

〉/𝐴),1 ≤ 𝑖 ≤ 𝑛1,  and 𝑀 ⊨ 𝑅(𝑎̅, 𝑏̅𝑛2−1, 𝑏𝑛2
) ∧

¬𝑅(𝑎̅, 𝑏̅𝑛2−1, 𝑏′′𝑛2
). 

Denote by 𝐵  the following set, 𝐵: = 𝐴 ∪ {𝑎̅𝑛1−1, 𝑏̅𝑛2−2} . By the inductive 

hypothesis 𝑡𝑝(〈𝑏𝑛2−1, 𝑏𝑛2
〉/𝐵) = 𝑡𝑝(〈𝑏𝑛2−1, 𝑏′′𝑛2

〉/𝐵),  and 𝑡𝑝(〈𝑎𝑛1
, 𝑏𝑛2

〉/𝐵) =

𝑡𝑝(〈𝑎𝑛1
, 𝑏′′𝑛2

〉/𝐵). 

If 𝑡𝑝(𝑏𝑛2−1/𝐵) = 𝑡𝑝(𝑏𝑛2
/𝐵)  then by Lemma 8.2.1 we have   

𝑡𝑝(〈𝑎𝑛1
, 𝑏𝑛2−1, 𝑏𝑛2

〉/𝐵) = 𝑡𝑝(〈𝑎𝑛1
, 𝑏𝑛2−1, 𝑏′′𝑛2

〉/𝐵),  what contradicts to our 

assumption. If 𝑡𝑝(𝑏𝑛2−1/𝐵) ≠ 𝑡𝑝(𝑏𝑛2
/𝐵) , then by Lemma 8.3.3 we also have 

𝑡𝑝(〈𝑎𝑛1
, 𝑏𝑛2−1, 𝑏𝑛2

〉/𝐵) = 𝑡𝑝(〈𝑎𝑛1
, 𝑏𝑛2−1, 𝑏′′𝑛2

〉/𝐵). 

           □ 

Theorem 8.3.1 [74, P. 1202] Every weakly ordered-minimal theory of convexity 

rank 1 which has less than 2𝜔 countable models is a binary structure. 

 

Proof of Theorem 8.3.1 Let the one-types 𝑝1, 𝑝2, … , 𝑝𝑠 ∈ 𝑆1(∅)  be non-

algebraic. The proof will be done by induction on 𝑠 ≥ 2, we will show that for every 

𝑛1, 𝑛2, …, 𝑛𝑠 < 𝜔 and every increasing tuples 𝑎̅𝑛1
, 𝑎′̅𝑛1

∈ [𝑝1(𝑀)]𝑛1 , 𝑎̅𝑛2
, 𝑎′̅𝑛2

∈

[𝑝2(𝑀)]𝑛2, …, 𝑎̅𝑛𝑠
, 𝑎′̅𝑛𝑠

∈ [𝑝𝑠(𝑀)]𝑛𝑠 such that for every 𝑖1, 𝑖2, 𝑗, 𝑘: 1 ≤ 𝑖1 < 𝑖2 ≤ 𝑠, 

1 ≤ 𝑗 ≤ 𝑛𝑖1
, and 1 ≤ 𝑘 ≤ 𝑛𝑖2

 𝑡𝑝(〈𝑎𝑛𝑖1

𝑗
, 𝑎𝑛𝑖2

𝑘 〉/∅) = 𝑡𝑝(〈(𝑎𝑛𝑖1

𝑗
)′, (𝑎𝑛𝑖2

𝑘 )′〉/∅) , 

𝑝(〈𝑎̅𝑛1
, 𝑎̅𝑛2

, … , 𝑎̅𝑛𝑠
〉/∅) = 𝑡𝑝(〈𝑎′̅𝑛1

, 𝑎′̅𝑛2
, … , 𝑎′̅𝑛𝑠

〉/∅) holds. 

Step 𝑠 = 2. If the type 𝑝1  is weakly orthogonal to the type 𝑝2, then Lemma 

8.2.3 and Theorem 8.2.1 imply that the set {𝑝1, 𝑝2} is orthogonal over ∅, that is the 

previous formula holds. And if 𝑝1 ⊥𝑤 𝑝2, then it follows from Lemma 8.3.5. 

Now let us suppose that the conjecture holds for every 𝑘 ≤ 𝑠 − 1. And we will 

prove it for 𝑠. Consider the case 𝑛1 = 1, 𝑛2 = 1, … , 𝑛𝑠 = 1. Assume the contrary: 

there is 〈𝑎1, 𝑎2, … , 𝑎𝑠〉 , 〈𝑎′1, 𝑎′2, … , 𝑎′𝑠〉 ∈ 𝑝1(𝑀) × 𝑝2(𝑀) × … × 𝑝𝑠(𝑀)  with 

𝑡𝑝(〈𝑎𝑖 , 𝑎𝑗〉/𝐴) = 𝑡𝑝(〈𝑎′𝑖 , 𝑎′𝑗〉/𝐴) holding for every 1 ≤ 𝑖 < 𝑗 ≤ 𝑠, and there is an ∅–

definable formula 𝑅(𝑥̅) with 𝔐 ⊨ 𝑅(𝑎1, 𝑎2, … , 𝑎𝑠) ∧ ¬𝑅(𝑎′1, 𝑎′2, … , 𝑎′𝑠).   

Lemma 8.2.1 implies that there exists a realization 𝑎′′𝑠 ∈ 𝑝𝑠(𝑀)  such that 
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𝑡𝑝(〈𝑎𝑖 , 𝑎′′𝑠〉/∅) = 𝑡𝑝(〈𝑎𝑖 , 𝑎𝑠〉/∅) for every 1 ≤ 𝑖 ≤ 𝑠 − 1, and 𝔐 ⊨ ¬𝑅(𝑎1, 𝑎2, …, 
𝑎𝑠−1, 𝑎′′𝑠). 

Let 𝐴: = {𝑎1, 𝑎2, … , 𝑎𝑠−3}  and consider an 𝐴 -type 𝑝′𝑠−2: = 𝑡𝑝(𝑎𝑠−2/𝐴) , 

𝑝′𝑠−1: = 𝑡𝑝(𝑎𝑠−1/𝐴), 𝑝′𝑠: = 𝑡𝑝(𝑎𝑠/𝐴). From the inductive hypothesis we have 

 

𝑡𝑝(〈𝑎𝑠−2, 𝑎𝑠〉/𝐴) = 𝑡𝑝(〈𝑎𝑠−2, 𝑎′′𝑠〉/𝐴) and 𝑡𝑝(〈𝑎𝑠−1, 𝑎𝑠〉/𝐴) = 𝑡𝑝(〈𝑎𝑠−1, 𝑎′′𝑠〉/𝐴). 
 

Then Lemma 8.3.3 implies 𝑡𝑝(〈𝑎𝑠−2, 𝑎𝑠−1, 𝑎𝑠〉/𝐴) = 𝑡𝑝(〈𝑎𝑠−2, 𝑎𝑠−1, 𝑎′′𝑠〉/𝐴) 

which is a contradiction with our assumption. By this, the case 𝑛1 = 1, 𝑛2 =
1, … , 𝑛𝑠 = 1 is proved. 

Let the assumption is true for every (𝑘1, 𝑘2, … , 𝑘𝑠) <𝑙𝑒𝑥 (𝑛1, 𝑛2, …, 𝑛𝑠), and 

prove it for (𝑛1, 𝑛2, …, 𝑛𝑠). Towards the contradiction: there are increasing tuples 

𝑎̅𝑛1
, 𝑎′̅𝑛1

∈ [𝑝1(𝑀)]𝑛1 , 𝑎̅𝑛2
, 𝑎′̅𝑛2

∈ [𝑝2(𝑀)]𝑛2 , …, 𝑎̅𝑛𝑠
, 𝑎′̅𝑛𝑠

∈ [𝑝𝑠(𝑀)]𝑛𝑠  with the 

properties 𝑡𝑝(〈𝑎𝑛𝑖1

𝑗
, 𝑎𝑛𝑖2

𝑘 〉/∅) = 𝑡𝑝(〈(𝑎𝑛𝑖1

𝑗
)′, (𝑎𝑛𝑖2

𝑘 )′〉/∅)  for each 𝑖1, 𝑖2, 𝑗, 𝑘:  1 ≤

𝑖1 < 𝑖2 ≤ 𝑠,  1 ≤ 𝑗 ≤ 𝑛𝑖1
, 1 ≤ 𝑘 ≤ 𝑛𝑖2

; and there exists an ∅ –definable formula 

𝑅(𝑥̅𝑛1
, 𝑥̅𝑛2

, … , 𝑥̅𝑛𝑠
) such that 𝔐 ⊨ 𝑅(𝑎̅𝑛1

, 𝑎̅𝑛2
, … , 𝑎̅𝑛𝑠

) ∧ ¬𝑅(𝑎′̅𝑛1
, 𝑎′̅𝑛2

, … , 𝑎′̅𝑛𝑠
).   

Then the Lemma 8.2.1 implies that there is a realization (𝑎𝑛𝑠

𝑛𝑠)′′ ∈ 𝑝𝑠(𝑀) with 

𝑎𝑛𝑠

𝑛𝑠−1
< (𝑎𝑛𝑠

𝑛𝑠)′′ , 𝑡𝑝(〈𝑎𝑛𝑖

𝑗
, 𝑎𝑛𝑠

𝑛𝑠〉/𝐴) = 𝑡𝑝(〈𝑎𝑛𝑖

𝑗
, (𝑎𝑛𝑠

𝑛𝑠)′′〉/𝐴) for all 1 ≤ 𝑖 ≤ 𝑠 −

1 and 1 ≤ 𝑗 ≤ 𝑛𝑖, 𝑀 ⊨ ¬𝑅(𝑎̅𝑛1
, 𝑎̅𝑛2

, … , 𝑎̅𝑛𝑠−1
, 𝑎̅𝑛𝑠−1, (𝑎𝑛𝑠

𝑛𝑠)′′).   

Denote 𝐵: = {𝑎̅𝑛1
, 𝑎̅𝑛2

, …, 𝑎̅𝑛𝑠−3
, 𝑎̅𝑛𝑠−2−1, 𝑎̅𝑛𝑠−1−1, 𝑎̅𝑛𝑠−1}, and take the types: 

𝑝′𝑠−2: = 𝑡𝑝(𝑎𝑛𝑠−2
/𝐵), 𝑝′𝑠−1: = 𝑡𝑝(𝑎𝑛𝑠−1

/𝐵), 𝑝′𝑠: = 𝑡𝑝(𝑎𝑛𝑠
/𝐵). 

The inductive hypothesis guarantees that 𝑡𝑝(〈𝑎𝑛𝑠−2
, 𝑎𝑛𝑠

〉/𝐵) = 𝑡𝑝(〈𝑎𝑛𝑠−2
, 𝑎′′𝑛𝑠

〉/

𝐵), 𝑡𝑝(〈𝑎𝑛𝑠−1
, 𝑎𝑛𝑠

〉/𝐵) = 𝑡𝑝(〈𝑎𝑛𝑠−1
, 𝑎′′𝑛𝑠

〉/𝐵).  

Then by the Lemma 8.3.3 we have that 𝑡𝑝(〈𝑎𝑛𝑠−2
, 𝑎𝑛𝑠−1

, 𝑎𝑛𝑠
〉/𝐵) =

𝑡𝑝(〈𝑎𝑛𝑠−2
, 𝑎𝑛𝑠−1

, 𝑎′′𝑛𝑠
〉/𝐵) which contradicts our assumption. 

           □ 

  

8.4 Sets of realizations of non-principal 1-types 

 

Definition 8.4.1 [71, P. 1390] Let we are given be a weakly ordered-minimal 

structure 𝔐, a subset 𝐴 ⊆ 𝑀, and a non-algebraic type 𝑝 ∈ 𝑆1(𝐴). The type 𝑝 is  

quasirational to the right (quasirational to the left) if there exists an 𝐴–definable 

convex one-formula 𝑈𝑝(𝑥) ∈ 𝑝  such that for each sufficiently saturated structure 

𝑁 ≻ 𝑀 𝑈𝑝(𝑁)+ = 𝑝(𝑁)+ (𝑈𝑝(𝑁)− = 𝑝(𝑁)−). A non-principal 1-type is called to be 

quasirational if it is either quasirational to the right or it is quasirational to the left. 

A non-quasirational non-principal 1-type is irrational. 

 

It is obvious that a one-type which is both quasirational to the left and 

quasirational to the right is principal. 

 

Fact 8.4.1 [74, P. 1203] Let we are given a weakly ordered-minimal theory 𝑇, let 
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𝔐 be a model of 𝑇, 𝑝 ∈ 𝑆1(∅) be quasirational to the right (quasirational to the left) 

one-type. Then 𝔐 does not contain a greatest (least) realization of the type 𝑝.  

 

Proposition 8.4.1 [71, P. 1390] Given 𝑇 a weakly ordered-minimal theory, 𝔐 a 

model of 𝑇, 𝐴 ⊆ 𝑀, 𝑝, 𝑞 ∈ 𝑆1(𝐴) non-algebraic types with 𝑝 ⊥𝑤 𝑞. Then: 

1) 𝑝 is irrational if and only if 𝑞 is irrational; 

2) 𝑝 is quasirational 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑞 is quasirational; 

 

In [57, P. 1] weakly ordered-minimal Ehrenfeucht theories of convexity rank 1 

which have non-weakly orthogonal quasirational 1-types over ∅ were constructed. We 

present these theories in examples 8.4.1 and 8.4.2. 

 

Example 8.4.1 [74, P. 1203] Let 𝔐 = 〈𝑀; <, 𝑃1, 𝑈2, 𝑐𝑖〉𝑖∈𝜔 be a linearly ordered 

such that the set 𝑀 is a disjoint union of interpretations of 1-predicates 𝑃 and ¬𝑃, 

for which 𝑃(𝑀) < ¬𝑃(𝑀). We identify each of the interpretations 𝑃 and ¬𝑃 with 

the set of rational numbers ℚ, ordered as usual. 

The symbol 𝑈 interprets a binary relation defined as follows: for all 𝑎, 𝑏 ∈ 𝑀, 

𝑀 ⊨ 𝑈(𝑎, 𝑏)  if and only if 𝔐 ⊨ 𝑃(𝑎) ∧ ¬𝑃(𝑏)  and (viewing 𝑎, 𝑏  as rationals) 

〈ℝ; <, +〉 ⊨ 𝑏 < 𝑎 + √2. 

The constants 𝑐𝑖 interpret an infinite strictly increasing sequence on 𝑃(𝑀) such 

that lim𝑖→∞𝑐𝑖 = ∞𝑃(𝑀). 

It can be shown that 𝑇ℎ(𝔐) is a weakly ordered-minimal theory of convexity 

rank 1. Let   𝑝(𝑥): = {𝑐𝑖 < 𝑥|𝑖 ∈ 𝜔} ∪ {𝑃(𝑥)},  𝑞(𝑦): = {∀𝑡[𝑈(𝑐𝑖 , 𝑡) → 𝑡 < 𝑦]|𝑖 ∈
𝜔} ∪ {¬𝑃(𝑦)}.   

It is obvious that 𝑝, 𝑞 ∈ 𝑆1(∅) are quasirational to the right, and 𝑝 ⊥𝑤 𝑞. 

We state that 𝑇ℎ(𝔐)  has exactly 4 countable pairwise non-isomorphic 

structures: the first case — 𝑝 and 𝑞 are not realized; the second case — the sets of 

realizations of 𝑝 and 𝑞 have the order type (0,1) ∩ ℚ (the saturated case); the other 

two cases —the realization set of one of 𝑝 or 𝑞 has the order type of [0,1) ∩ ℚ, and 

the realization set of the second — the order type of (0,1) ∩ ℚ. 

 

Example 8.4.2 [74, P. 1204] Let 𝔐 = 〈𝑀; <, 𝑃1
1, … , 𝑃𝑛

1, 𝑈1
2, … , 𝑈𝑛−1

2 , 𝑐𝑖〉𝑖∈𝜔 be 

linearly ordered such that 𝑀 is a disjoint union of interpretations of the predicates 

𝑃1, … , 𝑃𝑛 with 𝑃1(𝑀) < 𝑃2(𝑀) < ⋯ < 𝑃𝑛(𝑀). We identify each of the interpretations 

𝑃𝑘, where 1 ≤ 𝑘 ≤ 𝑛, with the set of rational numbers ℚ, ordered as usual. 

The symbols 𝑈𝑗 , where 1 ≤ 𝑗 ≤ 𝑛 − 1 , interpret binary relations defined as 

follows: for all 𝑎, 𝑏 ∈ 𝑀 , 𝑀 ⊨ 𝑈𝑗(𝑎, 𝑏)  if and only if 𝑀 ⊨ 𝑃1(𝑎) ∧ 𝑃𝑗+1(𝑏)  and 

〈ℝ; <, +〉 ⊨ 𝑏 < 𝑎 + √𝑝𝑗, where 𝑝𝑗 is the 𝑗𝑡ℎ prime number. 

The constants 𝑐𝑖 interpret an infinite strictly increasing sequence on 𝑃1(𝑀) such 

that lim𝑖→∞𝑐𝑖 = ∞𝑃1(𝑀). 

It can be shown that 𝑇ℎ(𝔐) is a weakly ordered-minimal theory of the convexity 

rank 1. 
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Let 

 

𝑝1(𝑥): = {𝑐𝑖 < 𝑥|𝑖 ∈ 𝜔} ∪ {𝑃1(𝑥)},  

𝑝𝑗(𝑥): = {∀𝑡[𝑈𝑗−1(𝑐𝑖 , 𝑡) → 𝑡 < 𝑥]|𝑖 ∈ 𝜔} ∪ {𝑃𝑗(𝑥)}, 2 ≤ 𝑗 ≤ 𝑛. 

 

It is clear that 𝑝1, … , 𝑝𝑛 ∈ 𝑆1(∅) are quasirational to the right, and {𝑝1, …, 𝑝𝑛} is 

pairwise non-weakly orthogonal. 

We state that 𝑇ℎ(𝔐)  has exactly 𝑛 + 2  countable pairwise non-isomorphic 

structures: the first case — 𝑝1, … , 𝑝𝑛 are not realized; the second case — the sets of 

realizations of each of 𝑝1, … , 𝑝𝑛 have the same order type (0,1) ∩ ℚ (the saturated 

case); the remaining 𝑛 cases — the realization set of only one of 𝑝1, … , 𝑝𝑛 has the 

order type [0,1) ∩ ℚ, and the sets of realizations of the remaining types — the order 

type (0,1) ∩ ℚ. 

 

Here we present examples of Ehrenfeucht weakly ordered-minimal theories of 

rank of convexity 1 which have non-weakly orthogonal irrational 1-types over ∅. 

 

Example 8.4.3 [74, P. 1204] Let the structure 𝔐 = 〈𝑀; <, 𝑃1, 𝑈2, 𝑐𝑖 , 𝑐′𝑗〉𝑖,𝑗∈𝜔 be 

linearly ordered, and the set 𝑀  be a disjoint union of interpretations of unary 

predicates 𝑃 and ¬𝑃 with 𝑃(𝑀) < ¬𝑃(𝑀). We identify each of the interpretations 

𝑃 and ¬𝑃 with the set of rational numbers ℚ, ordered as usual. 

The symbol 𝑈 interprets a binary relation defined as follows: for all 𝑎, 𝑏 ∈ 𝑀, 

𝑀 ⊨ 𝑈(𝑎, 𝑏) if and only if 𝑀 ⊨ 𝑃(𝑎) ∧ ¬𝑃(𝑏) and 〈ℝ; <, +〉 ⊨ 𝑏 < 𝑎 + √3. 

The constants 𝑐𝑖 and 𝑐′𝑗 interpret an infinite strictly increasing and an infinite 

strictly decreasing sequences on 𝑃(𝑀)  respectively with lim𝑖→∞𝑐𝑖 = √2𝑃(𝑀) =

lim𝑗→∞𝑐′𝑗. 

Let us construct all the models of the theory 𝑇. They are graphically represented 

on the Picture 1. 

It follows from the definition of 𝑈, that 𝑃(𝑥) and ¬𝑃(𝑦) are mutually dense:  

 

𝑀 ⊨ ∀𝑥1∀𝑥2[(𝑃(𝑥1) ∧ 𝑃(𝑥2) ∧ 𝑥1 < 𝑥2) ⇐ ∃𝑦(¬𝑃(𝑦) ∧ 𝑈(𝑥2, 𝑦) ∧ ¬𝑈(𝑥1, 𝑦))], 
and 

𝑀 ⊨ ∀𝑦1∀𝑦2[(¬𝑃(𝑦1) ∧ ¬𝑃(𝑦2) ∧ 𝑦1 < 𝑦2) ⇐ ∃𝑥(𝑃(𝑥) ∧ 𝑈(𝑥, 𝑦1) ∧ ¬𝑈(𝑥, 𝑦2))]. 
 

This means that together with density of ordering on 𝑃(𝑀) and on ¬𝑃(𝑀), 

elementary theory 𝑇 = 𝑇ℎ(𝔐)  admits quantifies elimination.Theory 𝑇  is weakly 

ordered-minimal of rank of convexity 1 since each 1-formula which has parameters 

from the set 𝑀 can be represented as a Boolean combination of convex 1-formulas 

and there exists no definable non-trivial equivalence relation. Consideration of 

quantifier-free 𝑛-types gives us that the theory 𝑇 is a small theory. 

Any one-formula from the following set determines a principal one-type over an 

empty set: 
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{𝑥 < 𝑐0, 𝑐0′ < 𝑥 ∧ 𝑃(𝑥), ¬𝑃(𝑦) ∧ 𝑈(𝑐0, 𝑦), ¬𝑈(𝑐0′, 𝑦) ∧ ¬𝑃(𝑦)}, {𝑐𝑖 < 𝑥 <
𝑐𝑖+1, 𝑐𝑗+1′ < 𝑥 < 𝑐𝑗′, ¬𝑈(𝑐𝑖 , 𝑦) ∧ 𝑈(𝑐𝑖+1, 𝑦), ¬𝑈(𝑐𝑗+1, 𝑦) ∧ 𝑈(𝑐𝑗 , 𝑦)|𝑖, 𝑗 ∈ 𝜔} 

 

 
 

Picture 1 

 

There exist only two non-principal one-types 𝑝(𝑥) and 𝑞(𝑦) over empty set:  
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𝑝(𝑥) ≔ {𝑐𝑖 < 𝑥 < 𝑐′
𝑗|𝑖, 𝑗 ∈ 𝜔} ∪ {𝑃(𝑥)}, 

𝑞(𝑦): = {¬𝑈(𝑐𝑖 , 𝑦) ∧ 𝑈(𝑐′𝑗 , 𝑦)|𝑖, 𝑗 ∈ 𝜔} ∪ {¬𝑃(𝑦)}. 

 

Let 𝔐1 be a countable structure of 𝑇 such that 𝑝(𝑥) and 𝑞(𝑦) are omitted in 

𝔐1. Then this structure is isomorphic to the initial model 𝔐 and 𝔐1 is elementary 

embedded in any structure of 𝑇. So, 𝔐1 is prime structure of 𝑇 since it is countable 

and atomic. 

Because 𝑇 is weakly ordered-minimal, in each structure of the theory 𝑇, for each 

1-type of 𝑇 the realization set of this 1-type is a convex set [73]. Denote by 𝔐2 a 

countable structure of the theory 𝑇 such that 𝑃(𝑀2) is non-definable and dense order 

without end elements. Then it follows from the properties of 2-formula 𝑈(𝑥, 𝑦) that 

the set 𝑞(𝑀2) is non-definable and dense ordered without end elements.  

Because every countable dense order is embedded into a dense order without end 

elements and the theory 𝑇 admits elimination of quantifies any countable structure of 

𝑇 is elementary embedded into 𝑀2. So, 𝔐2 countable saturated structure of 𝑇 and 

therefore, 𝑇 is small. 

Let 𝛼 ∈ 𝑝(𝑀2). Because theory 𝑇 admits quantifies elimination, we have five 

new one-types over 𝛼. 

 

𝑝𝑜(𝑥, 𝛼): = 𝑝(𝑥) ∪ {𝑥 = 𝛼}, 𝑝1(𝑥, 𝛼): = 𝑝(𝑥) ∪ {𝑥 < 𝛼},  

𝑝2(𝑥, 𝛼): = 𝑝(𝑥) ∪ {𝛼 < 𝑥}, 𝑞1(𝑦, 𝛼): = 𝑞(𝑦) ∪ {𝑈(𝛼, 𝑦)},  

𝑞2(𝑦, 𝛼): = 𝑞(𝑦) ∪ {¬𝑈(𝛼, 𝑦)}. 

 

One-type 𝑝0 is algebraic, 𝑝1 and 𝑝2 are non-principal, rational one-types over 

𝛼 , 𝑞1  and 𝑞2  are non-principal, quasi-rational, non-rational one-types over 𝛼 . It 

follows from definition of 𝑈(𝑥, 𝑦) that 𝑝1 =𝑅𝐾 𝑞1, 𝑝2 =𝑅𝐾 𝑞2, 𝑝1 ⊥𝑤 𝑞2, 𝑝2 ⊥𝑤 𝑞1.   

 Here, 𝑝𝑖 =𝑅𝐾 𝑞𝑖  means these two one-types are simultaneously realized or 

simultaneously omitted in any structure of 𝑇. Denote by 𝔐3 prime structure over 𝛼. 

Then by the previous statement, 𝑝(𝑀3) = {𝛼} and 𝑞(𝑀3) = ∅. 

Let 𝛽 ∈ 𝑞(𝑀2). Because the theory 𝑇 admits quantifies elimination, we have 

five new 1-types over 𝛽:  

 

𝑞′𝑜(𝑦, 𝛽): = 𝑞(𝑦) ∪ {𝑦 = 𝛽}, 𝑞′1(𝑥, β): = 𝑞(𝑦) ∪ {𝑦 < 𝛽},  

𝑞2′(𝑦, 𝛽): = 𝑞(𝑦) ∪ {𝛽 < 𝑦}, 𝑝1′(𝑥, 𝛽): = 𝑝(𝑥) ∪ {𝑈(𝑥, 𝛽)},  

𝑝2′(𝑥, 𝛽): = 𝑝(𝑥) ∪ {¬𝑈(𝑥, 𝛽)}. 

 

The 1-type 𝑞0′  is algebraic, 𝑞1′  and 𝑞2′  are non-principal, rational one-types 

over 𝛽, 𝑝1′ and 𝑝2′ are non-principal, quasi-rational, non-rational one-types over 𝛽. 
It follows from the definition of 𝑈(𝑥, 𝑦)  that 

𝑝1′ =𝑅𝐾 𝑞1′, 𝑝2′ =𝑅𝐾 𝑞2′, 𝑝1′ ⊥𝑤 𝑞2′, 𝑝2′ ⊥𝑤 𝑞1. 

Denote by 𝑀4 prime structure over 𝛽. Then by the previous formula, 𝑞(𝑀4) =
{𝛽} and 𝑝(𝑀4) = ∅. Let 𝛼1, 𝛼2 ∈ 𝑝(𝑀2), 𝛽1, 𝛽2 ∈ 𝑞(𝑀2) such that 𝛼1 < 𝛼2, 𝛽1 <
  𝛽2, 
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𝑀2 ⊨ 𝑈(𝛼1, 𝛽1) ∧ ¬𝑈(𝛼1, 𝛽2) ∧ 𝑈(𝛼2, 𝛽2). 
 

By using properties of types we can construct the countable structures 𝑀5 − 𝑀12 

such that 𝑝(𝑀𝑖) and 𝑞(𝑀𝑖) have different properties on the endpoints of these convex 

sets. 

An arbitrary countable structure 𝑁 ⊨ 𝑇  is isomorphic to one of these twelve 

countable structures, represented. Indeed, consider two convex sets 𝑝(𝑁) and 𝑞(𝑁). 

It follows from the previous statements that if one of these two sets is singleton then 

second is empty set. If one of these two sets has more two elements, then both sets are 

infinite. If one of these two sets has endpoint, say left (right), then left (right) side of 

second set is definable. 

 

Example 8.4.4 [74, P. 1206] Let 𝔐 = 〈𝑀; <, 𝑃1
1, … , 𝑃𝑛

1, 𝑈1
2, … , 𝑈𝑛−1

2 , 𝑐𝑖 , 𝑐′𝑗〉𝑖,𝑗∈𝜔 

be  linearly ordered, which universum 𝑀  is a disjoint union of interpretations of 

unary predicated 𝑃1, … , 𝑃𝑛 with 𝑃1(𝑀) < 𝑃2(𝑀) < ⋯ < 𝑃𝑛(𝑀). We identify each of 

the interpretations 𝑃1, … , 𝑃𝑛 with the set of rational numbers ℚ, ordered as usual. 

The symbols 𝑈𝑗, 1 ≤ 𝑗 ≤ 𝑛 − 1, interpret binary relations defined as follows: for 

all 𝑎, 𝑏 ∈ 𝑀, 𝔐 ⊨ 𝑈𝑗(𝑎, 𝑏) if and only if 𝑀 ⊨ 𝑃1(𝑎) ∧ ¬𝑃𝑗+1(𝑏) and 〈ℝ; <, +〉 ⊨

𝑏 < 𝑎 + √𝑝𝑗, where 𝑝𝑗 is the 𝑗𝑡ℎ prime number greater than 2. 

The constants 𝑐𝑖 and 𝑐′𝑗 interpret an infinite strictly increasing and an infinite 

strictly decreasing sequences on 𝑃1(𝑀)  respectively, moreover lim𝑖→∞𝑐𝑖 =

√2𝑃1(𝑀) = lim𝑗→∞𝑐′𝑗. 

It can be seen that 𝑇ℎ(𝑀)  is a weakly ordered-minimal theory of rank of 

convexity equal to 1. Denote  

  

𝑝1(𝑥): = {𝑐𝑖 < 𝑥 < 𝑐′𝑗|𝑖, 𝑗 ∈ 𝜔} ∪ {𝑃1(𝑥)}, 

𝑝𝑙(𝑥): = {∀𝑡[𝑈𝑙(𝑐𝑖 , 𝑡) → 𝑡 < 𝑥]|𝑖 ∈ 𝜔} ∪ {𝑈𝑙(𝑐′𝑗 , 𝑦)|𝑗 ∈ 𝜔} ∪ {𝑃𝑙(𝑥)}, 2 ≤ 𝑙 ≤ 𝑛. 

 

It is obvious that 𝑝1, … , 𝑝𝑛 ∈ 𝑆1(∅) are irrational types, and that {𝑝1, … , 𝑝𝑛} is a 

pairwise non-weakly orthogonal family. 

Let 1 ≤ 𝑗 ≤ 𝑛 − 1  and for every 1 ≤ 0 ≤ 𝑛 − 1  such that 𝑖 ≠ 𝑗  denote the 

following: 𝑈𝑖𝑗(𝑦, 𝑧) ≔ ∃𝑡[¬𝑈𝑖(𝑡, 𝑦) ∧ 𝑃1(𝑡) ∧ 𝑈𝑗(𝑡, 𝑧)]. We state that this formula is 

(𝑝𝑖+1, 𝑝𝑗+1)-splitting. 

 

Fact 8.4.5 [74, P. 1206] The following is true for each 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑛 − 1: 

1) The set 𝑈𝑗(𝑎, 𝑀) (𝑈𝑖𝑗(𝑎, 𝑀))has no endpoint from the right in 𝑀 for all 𝑎 ∈

𝑃1(𝑀) 𝑎 ∈ 𝑃𝑖+1(𝑀)); 

2) The set 𝑈𝑗(𝑀, 𝑏) (𝑈𝑖𝑗(𝑀, 𝑏)) has no endpoint from the left in 𝑀 for all 𝑏 ∈

𝑃𝑗+1(𝑀).  

  

Fact 8.4.6 [74, P. 1206] The next is true for each 𝑖 ≤ 𝑖 ≠ 𝑗 ≤ 𝑛 − 1: 
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1) 𝑓𝑗(𝑥): = 𝑠𝑢𝑝𝑈𝑗(𝑥, 𝑀) strictly increases on 𝑃1(𝑀); 

2) 𝑓𝑖𝑗(𝑥) ≔ sup 𝑈𝑖𝑗(𝑥, 𝑀) strictly increases on 𝑃𝑖+1(𝑀). 

 

We state that theory 𝑇ℎ(𝔐)  has exactly 4𝑛 + 2 + 2𝐶𝑛
2  (where 𝐶𝑛

2  is the 

binomial coefficient, that is, the theory has exactly 2𝐶𝑛
2 = 𝑛(𝑛 − 1) ) countable 

pairwise non-isomorphic structures: the first case — 𝑝1, … , 𝑝𝑛 are not realized; the 

second case — the sets of realizations of each of the types 𝑝1, … , 𝑝𝑛 have the order 

type (0,1) ∩ ℚ (the saturated case); the following 𝑛 cases — only one of 𝑝1, … , 𝑝𝑛 

is omitted by a singleton, and the remaining types are not realized; the following 3𝑛 

cases —the realization set of only one of 𝑝1, … , 𝑝𝑛  has the order type [0,1) ∩ ℚ, 

(0,1] ∩ ℚ or [0,1] ∩ ℚ, andthe realization set of the remaining types — the order type 

(0,1) ∩ ℚ; and the remaining 2𝐶𝑛
2  cases —the realization set of one of the types 

𝑝1, … , 𝑝𝑛  has the order type [0,1) ∩ ℚ , and the realization set of another one of 

𝑝1, … , 𝑝𝑛 has the order type (0,1] ∩ ℚ, and the sets of realizations of the remaining 

types have the order type (0,1) ∩ ℚ. 

Indeed, understand that if there is countable 𝑀′ ⊨ 𝑇 such that 𝑝1(𝑀′) has the 

order type [0,1) ∩ ℚ ((0,1] ∩ ℚ) and 𝑝2(𝑀′) has the order type (0,1] ∩ ℚ ([0,1) ∩
ℚ) then for any 3 ≤ 𝑗 ≤ 𝑛 𝑝𝑗(𝑀′) ≠ ∅ and 𝑝𝑗(𝑀′) has no endpoints in 𝑀′. 

If there exists 3 ≤ 𝑗 ≤ 𝑛  with 𝑝𝑗(𝑀′) = ∅  then taking 𝑎1, 𝑎2 ∈ 𝑝1(𝑀′)  with 

𝑎1 < 𝑎2 we obtain that 𝑓𝑗−1(𝑎1) = 𝑓𝑗−1(𝑎2), which is a contradiction with Fact 0.4. 

Suppose now that there exists such a natural number 3 ≤ 𝑗 ≤ 𝑛 that the type 

𝑝𝑗(𝑀′) has at least one endpoint. For simplicity, let the element 𝑐 be the left endpoint 

of 𝑝𝑗(𝑀′) . Then if 𝑎  is the left endpoint of the set 𝑝1(𝑀′) , we have that 

𝑈𝑗−1(𝑎, 𝑀′) < 𝑝𝑗(𝑀′) , that is, 𝑐  is the right endpoint of 𝑈𝑗−1(𝑎, 𝑀′) , which is a 

contradiction with Fact 8.4.2. 

□ 

Proposition 8.4.2 [74, P. 1207] Given a weakly ordered-minimal theory 𝑇 of 

convexity rank 1 which has less than 2𝜔 countable models, let 𝔐 be the countable 

saturated structure of 𝑇, 𝑝1 ∈ 𝑆1(∅) be a non-principal type over an empty set. Then 

the following conditions are true: 

1) If 𝑝1 is irrational and for each one-type 𝑞 ∈ 𝑆1(∅) such that 𝑝1 ⊥𝑤 𝑞 there 

is an ∅-definable bijection from 𝑝1(𝑀) to 𝑞(𝑀), then for each of the following six 

possibilities there exists a countable structure 𝑀1 of 𝑇 in which it is exactly realized: 

𝑝1(𝑀1) = ∅; |𝑝1(𝑀1)| = 1; 𝑝1(𝑀1) is order-isomorphic to (0,1) ∩ ℚ, [0,1) ∩ ℚ, 

(0,1] ∩ ℚ, or [0,1] ∩ ℚ. 

2)  If the type 𝑝1  is irrational and there exists a family of types 𝜆 = {𝑝𝑖 ∈
𝑆1(∅)|𝑝1 ⊥𝑤 𝑝𝑖 , 2 ≤ 𝑖 ≤ 𝑛}  such that for each types 𝑝′, 𝑝′′ ∈ 𝜆  there is no ∅ -

definable bijection from 𝑝′(𝑀) to 𝑝′′(𝑀), then for each of the following 4𝑛 + 2 +
2𝐶𝑛

2 possibilities there exists a countable structure 𝑀1  of 𝑇 in which it is exactly 

realized: 𝑝𝑖(𝑀1) = ∅  for any 1 ≤ 𝑖 ≤ 𝑛 ; 𝑝𝑖(𝑀1)  is order-isomorphic to the set 

(0,1) ∩ ℚ  for each 1 ≤ 𝑖 ≤ 𝑛 ; there is 1 ≤ 𝑖 ≤ 𝑛  with |𝑝𝑖(𝑀1)| = 1  and the 

remaining 𝑝𝑗(𝑀1)  (𝑗 ≠ 𝑖, 1 ≤ 𝑗 ≤ 𝑛 ) are empty; there exists 1 ≤ 𝑖 ≤ 𝑛  such that 
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𝑝𝑖(𝑀1) is order-isomorphic to [0,1) ∩ ℚ, (0,1] ∩ ℚ or [0,1] ∩ ℚ, and the remaining 

𝑝𝑗(𝑀1) (𝑗 ≠ 𝑖, 1 ≤ 𝑗 ≤ 𝑛) are order-isomorphic to (0,1) ∩ ℚ; there exist distinct 𝑖, 𝑗 

with 1 ≤ 𝑖, 𝑗 ≤ 𝑛  such that 𝑝𝑖(𝑀1)  is order-isomorphic to [0,1) ∩ ℚ , 𝑝𝑗(𝑀1)  is 

order-isomorphic to either (0,1] ∩ ℚ or [0,1) ∩ ℚ, and the remaining types 𝑝𝑠(𝑀1) 

(𝑠 ≠ 𝑖, 𝑠 ≠ 𝑗, 1 ≤ 𝑠 ≤ 𝑛) are order-isomorphic to (0,1) ∩ ℚ, and conversely. 

3) If 𝑝1 is quasirational to the right (or to the left) and for every one-type 𝑞 ∈
𝑆1(∅) for which 𝑝1 ⊥𝑤 𝑞 there exists an ∅-definable bijective function from 𝑝1(𝑀) 

to 𝑞(𝑀), then for each of the following three possibilities there exists a countable 

structure 𝑀1  of 𝑇  in which it is exactly realized: 𝑝1(𝑀1) = ∅; 𝑝1(𝑀1) is order-

isomorphic to (0,1) ∩ ℚ; 𝑝1(𝑀1) is order-isomorphic to [0,1) ∩ ℚ ((0,1] ∩ ℚ). 

4)  If 𝑝1  is a quasirational type and there exists a family 𝜆 = {𝑝𝑖 ∈
𝑆1(∅)|𝑝1 ⊥𝑤 𝑝𝑖 , 2 ≤ 𝑖 ≤ 𝑛}  such that for each types 𝑝′, 𝑝′′ ∈ 𝜆  there is no ∅ -

definable bijection from 𝑝′(𝑀)  to 𝑝′′(𝑀) , then for each of the following 𝑛 + 2 

possibilities there exists a countable structure 𝑀1 of the theory 𝑇 in which it is exactly 

realized: 𝑝𝑖(𝑀1) = ∅  for any 1 ≤ 𝑖 ≤ 𝑛 ; 𝑝𝑖(𝑀1)  is order-isomorphic to the set 

(0,1) ∩ ℚ for each 1 ≤ 𝑖 ≤ 𝑛 ; there is a number 1 ≤ 𝑖 ≤ 𝑛  such that 𝑝𝑖(𝑀1) is 

order-isomorphic to either [0,1) ∩ ℚ (𝑝𝑖 is a quasirational to the right type), or it is 

order-isomorphic to (0,1] ∩ ℚ (when the type 𝑝𝑖 is a quasirational type to the left), 

and the remaining 𝑝𝑗(𝑀1) (𝑗 ≠ 𝑖, 1 ≤ 𝑗 ≤ 𝑛) are order-isomorphic to the (0,1) ∩ ℚ.  

□ 

Proposition 8.4.3 [74, P. 1208] Let 𝑇 be a weakly ordered-minimal theory of 

convexity rank 1 having less than 2𝜔  countable structures. Let 𝔐  and 𝔑  be 

countable structures of 𝑇 such that for all 𝑝 ∈ 𝑆1(∅) 𝑝(𝑀) is order-isomorphic to 

𝑝(𝑁). Then 𝑀 and 𝑁 are isomorphic. 

 

Proof of Proposition 8.4.3. Consider {𝑚𝑖  | 𝑖 ∈ 𝜔} and {𝑛𝑖  | 𝑖 ∈ 𝜔} to be 

enumerations of the sets 𝑀 and 𝑁 respectively. 

Step 0. Take 𝐴0
𝑀, 𝐴0

𝑁 denote 𝑑𝑐𝑙(∅) in 𝔐 and 𝔑 respectively. Define a partial 

isomorphism 𝑓0: 𝐴0
𝑀 → 𝐴0

𝑁 by an obvious way. 

Step 1. Choose the least index 𝑖 ∈ 𝜔  such that 𝑚𝑖 ∈ 𝐴0
𝑀 . We have that 𝑚𝑖 

realizes a type 𝑝 which is not algebraic over ∅. Next, consider all 𝑞 ∈ 𝑆1(∅) with 

𝑞 ⊥𝑤 𝑝 . Let 𝐴1
𝑀: = 𝐴0

𝑀 ∪ 𝑝(𝑀) ∪ {𝑞(𝑀)|𝑞 ⊥𝑤 𝑝} . Define 𝐴1
𝑁  in a similar way. 

Because the sets 𝑝(𝑀) and 𝑝(𝑁) are order-isomorphic, we can extend the partial 

isomorphism from 𝑝(𝑀) into 𝑝(𝑁), and correspondingly from 𝑞(𝑀) into 𝑞(𝑁) for 

any non-weakly orthogonal type 𝑞 ∈ 𝑆1(∅). Let 𝑓1: 𝐴1
𝑀 → 𝐴1

𝑁 be the corresponding 

partial isomorphism. It is clear that 𝑓1 extends 𝑓0. 

Step 𝑘. Let us suppose we have already constructed 𝑓𝑘−1, 𝐴𝑘−1
𝑀  and 𝐴𝑘−1

𝑁  for 

which 𝑓𝑘−1: 𝐴𝑘−1
𝑀 → 𝐴𝑘−1

𝑁  is a partial isomorphism. Find the smallest 𝑖 ∈ 𝜔  for 

which 𝑚𝑖 ∈ 𝐴𝑘−1
𝑀 . Then 𝑚𝑖 ∈ 𝑑𝑐𝑙(∅) and there is a non-algebraic 𝑝 ∈ 𝑆1(∅) such 

that 𝑚𝑖 ∈ 𝑝(𝑀). Clearly 𝑝 is not realized in 𝐴𝑘−1
𝑀 , and the same is true of any 𝑞 ∈

𝑆1(∅)  which is not weakly orthogonal to 𝑝 . Let 𝐴𝑘
𝑀: = 𝐴𝑘−1

𝑀 ∪ 𝑝(𝑀) ∪
{𝑞(𝑀)|𝑞 ⊥𝑤 𝑝}. Similarly, 𝐴𝑘−1

𝑁  is defined, and a partial isomorphism 𝑓𝑘: 𝐴𝑘
𝑀 → 𝐴𝑘

𝑁 
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extending 𝑓𝑘−1 is constructed. 

Finally, we define the desired isomorphism 𝑓: 𝑀 → 𝑁 as 𝑓: = ⋃𝑘∈𝜔 𝑓𝑘. 

           □ 

Proof of Theorem 8.1 Let us suppose that 𝑇  is not a countably categorical 

theory, and it has less than 2𝜔 countable structures. Let Λ1, Λ2 be maximal pairwise 

weakly orthogonal families of irrational and quasirational 1-types over ∅ respectively. 

It is clear that   Λ1 and Λ2 are finite. Suppose that, if for example 𝜆1 was infinite, 

then we would get that the theory 𝑇 would have 2𝜔 countable nonisomorphic models. 

Let Λ1 = {𝑝1, 𝑝2, … , 𝑝𝑙} , Λ2 = {𝑞1, 𝑞2, … , 𝑞𝑚}  for some nonnegative integers 

𝑙, 𝑚 < 𝜔. Also let Λ1
i = {𝑝𝑠

𝑖|𝑝𝑖 ⊥𝑤 𝑝𝑠
𝑖 , 𝑠 ∈ 𝜔}, Λ2

j
= {𝑞𝑘

𝑗
|𝑞𝑗 ⊥𝑤 𝑞𝑘

𝑗
, 𝑘 ∈ 𝜔} for every 

integers1 ≤ 𝑖 ≤ 𝑙, 1 ≤ 𝑗 ≤ 𝑚, and let |Λ1
i | = 𝜅𝑖, and |Λ2

j
| = 𝛾𝑗. 

If 𝜅𝑖 = 1  then we set 𝑛𝑖 = 6 , where 𝑛𝑖  is the number of possibilities for 

pairwise non-isomorphic countable structures of 𝑇, because by Proposition 8.4.2 the 

theory 𝑇 has exactly 6 countable structures with different order types of the realization 

set of 𝑝𝑖. If 1 < 𝜅𝑖 < 𝜔 then 𝑛𝑖 ≤ 4𝜅𝑖 + 2 + 2𝐶𝜅𝑖

2 . Obviously, 2𝐶𝜅𝑖

2 < 𝜅𝑖
2. If 𝜅𝑖 = 𝜔 

then 𝑛𝑖 ≤ 𝜔. 

Further if 𝛾𝑗 = 1 then we set 𝑡𝑗 = 3, where 𝑡𝑗 is the number of possibilities for 

pairwise non-isomorphic countable structures of 𝑇, because by the Proposition 8.4.2 

𝑇 has 3 countable structures with different order types ofthe realization set of 𝑞𝑗. If 

1 < 𝛾𝑗 < 𝜔 then 𝑡𝑗 ≤ 𝛾𝑗 + 2. If 𝛾𝑗 = 𝜔 then 𝑡𝑗 ≤ 𝜔. 

We state that the theory 𝑇  has no more than ó𝑖=1
𝑙 𝑛𝑖 ∗ ó𝑗=1

𝑚 𝑡𝑗  countable 

structures, where Π𝑖=1
𝑙 𝑛𝑖 = 𝑛1 ∗ 𝑛2 ∗ … ∗ 𝑛𝑙 , Π𝑗=1

𝑚 𝑡𝑗 = 𝑡1 ∗ 𝑡2 ∗ … ∗ 𝑡𝑚  and the 

symbol ∗ is the operation of multiplication of cardinals. It is clear that the product 

Π𝑖=1
𝑙 𝑛𝑖 ∗ Π𝑗=1

𝑚 𝑡𝑗, is greater than or equal to 3 and less than or equal to 𝜔. This holds 

because by rules of the cardinal arithmetic for the product of finitely many cardinals, 

each of the cardinals is not greater than 𝜔, is either equal to 𝜔, or is less than 𝜔. 

           □ 

By this we have proved the main theorem of the section, which states that the class 

of weakly o-minimal theories of convexity rank 1 satisfies the Vaught conjecture. 
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CONCLUSION 

 

The dissertation considers countable models of small theories and their number 

up to an isomorphism. Among classes under investigation are the classes of linearly 

ordered theories, partially ordered theories, and dependent, namely, weakly o-minimal 

of convexity rank 1, theories. 

One of the questions was to find theories, which have the maximal, that is, 2𝜔, 

number of countable non-isomorphic models. The main results in this direction are the 

following: 

1) In a countable complete theory of (an expansion of) a linear order if there exists 

a subset of a finite cardinality of a model of this theory and a non-principal extremely 

trivial 1-type over this subset, then the given theory will have the maximal number 

countable non-isomorphic models. 

That is, if there exists a type, such that in a prime model over any finite number 

of realizations it is realized only by those realizations. 

2) If in a countable complete theory if there is a formula which defines a partial 

order on elements, or on tuples of elements with the condition that for every arbitrary 

natural number there exists a discrete chain of length not less than this natural number, 

then the given countable complete theory will have 2𝜔 countable models up to an 

isomorphism. 

3) If in a countable complete theory of (an expansion of) a linear order there exists 

a formula quasi-successor on some non-principal 1-type, then this theory has the 

maximal number of countable non-isomorphic models. 

The other question was to find a subclass of dependent theories, for which the 

Vaught hypothesis holds. The main result on this question is the following: 

4) The Vaught conjecture holds for the class of weakly o-minimal theories of the 

convexity rank 1. 

That is, in a countable signature a weakly o-minimal theory of convexity rank 1 

is either countably categorical; is an Ehrenfeucht theory, namely it has 𝑘 countable 

models, for 𝑘 between 2 and 𝜔; has 𝜔 countable models, or has 2𝜔, the maximal 

number of countable models. 

 Assessment of the completeness of the aims of the work. All the results are 

new and are based on our own methods and tools. Conditions guaranteeing maximality 

of the number of countable models were obtained, as well as a subclass of dependent 

theories satisfying the Vaught conjecture was found. Therefore, the work objectives 

were completed. 

 Suggestions on applications of the obtained results. The results obtained in 

this area of model theory can be used during the study of countable models of countable 

small theories and during a search of a proof for the Vaught conjecture. For example, 

the conditions obtained for maximality of the number of countable models imply that 

a theory which has 𝜔1 countable models should not satisfy those conditions. Results 

obtained on the nature of countable nonisomorphic models of small theories can be 

applied theories of algebraic structures. 

 Assessment of scientific level of the work in comparison with the 
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achievements in the scientific direction. The results obtained in comparison with the 

best achievements of foreign colleagues do not lose and contribute to the study of 

countable spectrum of small theories. 
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