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DEFINITIONS

In the dissertation the following notations with the corresponding definitions are
used. Here we present only the basic model-theoretic definitions [1, 2, 3, 4]. For
convenience of narration more complex notions will be introduced later.

A language or a signature £ (or X) consists of the following symbols:

1) for every f; € & a set of functional symbols & and corresponding positive
integers ng;

2) for every R; € R a set of relational symbols R and corresponding positive
integers ng;

3) a set of symbols € for the constants.

An g-structure Mt is given by the following:

1) a universe (or a universal set) of the structure 9t, a non-empty set M;

2) for every functional symbol f € & a function f™: M - M;

3) for every relation symbol R € R aset R™ € M™r; and

4) for every constant symbol ¢ € € an element ¢™ € M from the universe of the
structure.

The interpretations f™, R™ and ¢™, when no ambiguity appears, will be
denoted as the symbols f, R and c¢ themselves. We will write an 2-structure as It =
(M; f™ R™, ¢™) rc pest cec, OF, shorter as (M; f, R, €) reg rem.cec OF (M; ).

An L-substructure of an £-structure 9, is an g-structure M, suchthat M € N
and the next conditions hold:

1) for all constant symbols ¢ € 8, ¢™ = ¢¥%;

2) for all n-ary function symbols f € g, forall a € M™, f™(a) = f*(a) € M;

3) for all n-ary relational symbols R € , R™ = R n M™.

A homomorphism from a structure 9t to a structure 9t isa mapping h: M - N
that satisfies the next conditions:

1) for every constant symbol ¢ € £ of the signature, h(c™) = c%;

2) for every n-ary function symbol f € £ and for every a € M™, h(f™(a)) =
f%(h(@)); and

3) for every n-ary relational symbol R € £ of the signature, and every tuple a €
M™, if a € R™ then h(a) € R™

An embedding is a homomorphism h: 9t - 9t for which for any n-ary
relational symbol R of £ and for every tuple @ € M™ with a € M", a € R™ if and
only if a € R™,

An isomorphism is a surjective embedding between two structures 9t and 9.

An automorphism is an isomorphism from the structure 9t onto itself.

Isomorphic structures are structures 9t and 9t, such that there exists an
isomorphism function from 9t to M. It is denoted as M = It.

A term of a language £ can be defined inductively by the next rules:

1) each variable is a term;

2) each constant symbol of the language £ is a term as well;
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3) given f € & to be an n-ary function symbol and ¢,,¢,,...,t, to be terms,
f(ty, ty,...,t,) isalso aterm.

An atomic formula of the language £ is an expression of the form
R(t;, tq,...,t,), Where R is an n-ary relational symbol of the language £, and
t;,tq,...,t, are terms of L.

Atuple a = (ay,...,a;) € M* satisfies the atomic formula ¢(xy,...,x;) ifin
the structure Mt if the following holds: R¥(t,(a),..., t,(@)). Satisfaction is denoted
in the following way: M = ¢(ay,...,a,). In the case when the tuple a does not
satisfy the formula ¢ in Mt, we denote itas M = p(a,,...,a,).

A formula and satisfaction of a formula in an -structure 9t are given by the
next rules:

1) each atomic formula is a formula;

2) given a formula ¢(x4,...,x,), the statement —¢@(x,,...,x,) isaformula. For
a € M™, its negation is satisfiable (I = —¢p(a)) if and only if M = p(a).

3)if @;(xq,...,x,) and @,(x4,...,x,) are formulas, then the statements (¢, A
©,)(x1,...,x,) and (@1 V @y)(x4,...,%x,) are formulas as well. Given a € M™,
M E (o1 A py)(a) if and only if both I = ¢, (@) and M = ¢, (a) hold; and M =
(p1 V @y)(a) ifand only if M = @,(a) or M E @, (a).

4) if o(xq,...,x,) is a formula, then (3x;(xq,...,x,) and Vx;p(xq,..., xy,),
for 1 <i <n are also formulas. If (a,,...,a,_;) € M" 1, then the formula 3x,
p(ay,...,a,_1,xy,) is satisfied in the structure Mt if and only if there is a,, € M for
which I = ¢(a4,...,a,-1,a,); and M = Vx,p(a,,...,a,-1, x,) if and only if for
each a, € M we have M & ¢(a,,...,a,-1,a,).

A sentence is a formula which has no free variables, that is, every variable
occurring in it is in a scope of an existential of universal quantifier.

A definable subset of an -structure 9t is such a subset D of the set M", that

there is an element b € M™ and a formula @ (xy, x5, ..., Xp4m) With
D == {(al,...,an) € Mn | 93? = (p(al,...,an,bl,...,bn)}.

An elementary substructure of a structure 9t is a structure 9t (equivalently, 9t
is called an elementary extension of the structure 9Jt), denoted as 9t < M€, if for every
n-formula ¢@(x) of the language and for all elements a € M™, we have that It =
p(a) ifand only if 9t = @ (a).

An elementary embedding from a structure 9t to a structure 9 is a map f
from the universal set M to the universal set N, such that every formula ¢(x4,...,x,)
of the language and every a € M", we have M & ¢(a,,...,a,) if and only if 9t =
o(f(ay),...,f(an)).

Elementary equivalent structures 9t = 9t are 8-structures 9t and 9 such
that, for every £-sentence g, M k& ¢ if and only if 9t = o. Elementary equivalence
of models of & is equivalent to having the same theory.

An L-theory is a set of £-sentences.

A complete theory is an 2-theory T such that for every sentence o of & either
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ceTor—-oceT.

A countable theory is a theory which has only a countable number of sentences.

A model 9t of a theory T is a structure Mt such that I = ¢ holds for all
sentences ¢ € T.

A satisfiable theory is a theory which has a model.

A sentence ¢ follows from the theory T if it holds in all modelsof T, T  ¢.

A consistent theory is a theory T such that for every formula ¢ of the given
language, T ¥ (¢ A =@).

An inconsistent theory is a theory which is not consistent.
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NOTATIONS AND ABBREVIATIONS

languages

structures

universes of structures

elements of structures

(usually) elements of extensions of structures
tuples

types

formulas

negation

existential and universal quantifiers
disjunction and conjunction

implication and biconditional

if and only if

a is an element of the set A

a is not an element of the set A

subset (substructure) relation

subset (substructure) but not equal

union, intersection, relative complement of sets
all elements of set A are greater than elements of B
cardinality of a set A

set of realizations

neighbourhood, quasi-neighbourhood
satisfaction in structure

entails

isomorphism of structures

elementary equivalence

elementary substructure

theory of structure IN

class of all models of theory T

number of models of cardinality A of T

set of all complete n-types (over set A) of theory T
type of a over the set A

relation of almost orthogonality of types
relation of weak orthogonality of types

finite diagram (dowry)

convex closure of a formula (type)

acl(A) (dcl(A)) algebraic (definable) closure of a set



INTRODUCTION

Actuality of the research theme. At the present time, one of the main tasks of
model theory is solving the spectral problem, that is, description for the different
classes of theories of the function I(T, 1), the function determining the number of non-
isomorphic models of a theory T of cardinality A. One of the insufficiently explored
problems is the problem of the description of the number I(T, w) of countable non-
isomorphic models of the theory T.

Related with this issue is the Vaught’s conjecture, or the Vaught’s hypothesis,
according to which there is no countable theory for which the number of countable
models up to an isomorphism is larger than the cardinality of natural numbers and less
than the cardinality of real numbers, that is, there exist no theory satisfying the
condition w < I(T, w) < 2%,

Morley proved [5] that if I(T,w) is infinite then it must be w or 2* or the
cardinality of between w and the cardinality of continuum. That is, I(T,w) € w U
{w, wq, 2¢}. Vaught proved [6] that the number of countable nonisomorphic models
can not be equal to 2.

A theory is called to be small if the number of all its n-types is no more than
countable for any finite n. In the case when a theory is not small it has the maximal
number of countable models, that is equal 2¢.

J. Baldwin and A. Lachlan confirmed the Vaught conjecture for the class of
uncountably categorical theories [7]. MacKay, Harrington and Shelah in the work [8]
confirmed the VVaught conjecture for the class of all omega-stable theories. By using of
a theory of orthogonality of 1-types in ordered minimal theories of D. Marker [9], L.
Mayer proved the Vaught conjecture for the class of ordered minimal theories [10].
The Vaught conjecture for the class of quite o-minimal theories was confirmed by S.V.
Sudoplatov and B.Sh. Kulpeshov [11].

Although the Vaught hypothesis has been proved for various individual classes of
theories, in general case the task of counting the number of countable nonisomorphic
models is still not solved. One of the classes for which the Vaught conjecture has not
been proven yet is the class of dependent theories. Exactly this class is under
investigation of this research.

The description of conditions under which complete theories have the maximal,
that is 2%, number of countable non-isomorphic models, is an important question in
studying the countable spectrum of those theories. For instance, at first, L. Mayer found
sufficient conditions for an o-minimal theory to have the maximal number of countable
non-isomorphic model; and only after that she moved to proving the Vaught conjecture
for o-minimal theories [10, P. 157]. Another example is the work [11, P. 129] by S.
Sudoplatov and B.Sh. Kulpeshov, in which the authors indicated the conditions of
maximality of countable spectrum, and proved the Vaught conjecture for quite o-
minimal theories. In this connection, most of the work will be devoted to finding
conditions under which a given theory has the maximal number of countable models
up to an isomorphism.

The aims and objectives of the study. The work is devoted to studying countable
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spectrum of theories which have a countable number of types. The aims of the work
are the following:

1) To find conditions of maximality of a number of countable models.

2) To find a class of dependent theories for which the Vaught conjecture can be
solved.

The main provisions for the defense of the dissertation:

1) Given a countable complete theory of (an expansion of) a linear order. If there
exists a finite subset of some model of this theory and a non-principal extremely trivial
1-type over this subset, then the given theory has the maximal number, that is 2¢, of
countable non-isomorphic models.

2) If there exists a formula which determines a partial order on tuples of elements
such that for every given natural number there exists a finite discrete chain whose
length is greater or equal to the number, then the given countable theory has the
maximal number of countable models up to an isomorphism.

3) If in a countable complete theory of (an expansion of) a linear order there exists
a formula quasi-successor on some non-principal 1-type. Then this theory has 2¢
countable non-isomorphic models.

4) The subclass of the class of dependent theories — the class of weakly o-minimal
theories of convexity rank 1 satisfies the Vaught conjecture.

The objects of research are small dependent theories.

The research subjects are countable models of small dependent theories and their
number up to an isomorphism.

Research methods include analysis of theories through the use of properties of
types. Neighbourhoods in a realization of a type are considered, that is how formulas
behave inside the realization set of a given type (for example in [12]), as well as
relations of orthogonality between few types are considered: the weak and almost
orthogonality between types give an opportunity to understand in which way
realizations of these types in models are connected [13]. For example, realization of
one type in a model can imply realization of one or more types in the same model, or
all realizations of few types can be independent from each other, allowing all possible
combinations of realizing-omitting these types in models of the theory. Also, while
constructing models, a method based on the Tarski-Vaught test (criterion) is used. This
criterion guarantees for a subset of a model that it would be a model of the given theory
(and moreover, it would be an elementary submodel of this model).

Novelty of the dissertation research. Problem of description of a countable
spectrum of small dependent theories is open at the present time. Classes of theories
under the study have not been investigated on a number of countable models.

Theoretical and practical significance of the research. Researches in this area
constitute steps in solving the Vaught conjecture. Expected results on the nature of
countable models of small dependent theories can be applied to group, ring and field
theory.

Connection of the dissertation thesis with the other scientific research works.
The dissertation thesis was implemented within the scientific projects of the program
of grant financing of fundamental researches in the area of natural sciences of the
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Ministry of education and science of the Republic of Kazakhstan “Properties of types
in dependent theories” (2015-2017 years, 5125/GF4) and “Conservative extensions,
countable ordered models and closure operators” (2018-2020 years, AP05134992).

The work approbation. Results of the work were presented and discussed at the
following conferences [14-23] and seminars: Logic Colloquium 2015, University Of
Helsinki, Finland, 2015; “Function theory, informatics, differential equations and their
applications”, Almaty, 2015; “Algebra, analysis, differential equations and their
applications”, Almaty, 2016; Logic Colloquium 2016, Leeds, United Kingdom, 2016;
Annual April scientific conference of the Institute of Mathematics and Mathematical
Modeling, Almaty, 2017; International Summer School-Conference “Problems Allied
to Universal Algebra and Model Theory”, Erlagol-2017, Novosibirsk, Russia, 2017;
“Actual problems of pure and applied mathematics”, Almaty, 2017; Scientific seminars
of the department of algebra and mathematical logic of the Institute of Mathematics
and mathematical modeling; Results of this dissertation were discussed with model
theory specialists during the scientific training in University of Illinois at Chicago and
were presented at Louise Hay Logic Seminar in November 2017.

Publications. Based on results of the dissertation 15 works were published: 5
journal articles (2 in Scopus indexed Journals and 3 in journals recommended by the
Committee for Control in Education and Science of the Ministry of Education and
Science of the Republic of Kazakhstan), and 10 in proceedings of international
scientific conferences.

Volume and structure of the dissertation. The work includes the title page,
contents, normative references, definitions, notations and abbreviations, introduction,
8 sections, conclusion and references. Total volume of the dissertation is 79 pages, the
work contains 1 illustration and 79 literature references.

Main content of the dissertation. The introduction includes actuality of the
research theme, aims and objectives, the main provisions for the defense of the
dissertation, the research object and subject, methods, novelty and theoretical and
practical significance of the research, connection of the dissertation thesis with the
other scientific research works, the work approbation, author’s publications, and
volume, structure and content of the dissertation thesis.

The first section explains the current state of the investigated area of model theory.

The second section gives preliminary information and explains basic tools which
will be used throughout the dissertation.

The 3rd section considers dowries (in other words, finite diagrams), meaning, sets
of types realized in a given model; and, under the given assumption considers the case
of a counterexample of VVaught conjecture.

In the fourth section the notions of weak and almost orthogonality are introduced,
some useful properties of types, as well as few theorems connecting orthogonality with
the number of countable models are proven.

The 5th section is focused on finding conditions that imply small theories of linear
order have the maximum number of countable non-isomorphic models. We introduce
different notions of triviality of non-principal types, give examples and prove that a
theory of order, which has an extremely trivial type, has 2% countable models.
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In Section 6 countable small theories, which have definable partial order on
tuples, are studied, and a theorem on a sufficient condition on such theories to have the
maximal number of countable models of is proved.

Section 7 uses approach from the Chapter 6 in order to prove that a theory of a
definable linear order which has a so-called formula-quasi-successor has the maximal
number of countable non-isomorphic models.

In Section 8 we consider a subclass of dependent theories, namely, the class of
weakly o-minimal theories of convexity rank 1. We prove binarity of such theories and
show that they satisfy the Vaught conjecture, that is we prove that every weakly o-
minimal theory of convexity rank 1 is either countably categorical, Ehrenfeucht, has
w, or 2% countable models.

The conclusion lists and generalizes the main results obtained during
implementation of the dissertation thesis.
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1 HISTORICAL OVERVIEW

Two models of a given language are said to be isomorphic if there exists a
bijective function between universes of those models, which preserves basic relations
from one structure into the other. It is obvious that in case when two models are
isomorphic, then the cardinalities of their universes are equal.

A. Los in [24] conjectured that if a complete theory is categorical in some
uncountable cardinality, then it is categorical in all other uncountable cardinalities as
well. In 1965 M. Morley [25] confirmed the Los’s hypothesis proved homogeneity of
all models of categorical theories, while changing the quality of research in model
theory, systematically introducing methods of working with types (locally consistent
sets of formulas), through introducing ranks of the types and formulas based on study
of category of topological spaces of n-types and elementary embeddings. This article,
as well as Baldwin-Lachlan’s article [7, P. 79], played an important role in
development of model theory throughout the next two decades. M. Morley formulated
a list of unsolved problems on uncountably categorical theories, which included,
besides the above-mentioned question on finite axiomatizability, the question of
finiteness of a Morley rank, a question that suggests that the number of countable non-
isomorphic models may not be finite. J.T. Baldwin [26] and independently, B.1. Zilber
[27], proved finiteness of Morley rank for uncountably categorical theories. T.G.
Mustafin and A.D. Taimanov, setting a condition on the Morley tower (that is, an
increasing chain of elementary embedded models) given, proved non-finiteness of the
number of countable models [28]. The final solution of the problem of Morley about
the number of countable models was given in the work by J.T. Baldwin and A. Lachlan
[7, P. 79], in which authors proved that an uncountably categorical theory can be either
1 or countable number of countable models. In addition, they reproved M. Morley’s
theorem, meanwhile establishing that every model of such a theory is characterized by
a dimension of a strongly minimal formula. This work defined the nature of researches
in model theory, in particular for questions related with counting the number of
countable non-isomorphic models, the idea of the dimension began to play a decisive
role.

A spectrum of a complete theory is a function that assigns to cardinal A the
number of non-isomorphic models of the given theory of cardinality A, I(T, 7).

Main problem. To prove that for every complete theory the spectrum
function is non-decreasing for uncountable cardinals.

Saharon Shelah in a series of papers [29-32] proved that for a class of non-stable
theories, and stable but theories which are not non-superstable, such a function takes
the maximum value on uncountable cardinals. While doing so, he developed the
stability theory, now it had become classics in model theory [33]. In addition, it became
clear that for the class of totally transcendental theories and the class of superstable but
not totally transcendental theories the spectrum functions will be different, and it is
necessary to conduct the research of properties of models of these theories by means
of rank functions.

Spectrum and rank functions.
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Totally transcendental theories.

A theory is called totally transcendental if every its type has Morley rank. Every
countable w,-categorical theory is a totally transcendental theory, the class of totally
transcendental theories coincides with the class of w-stable theories. S. Shelah showed
that for every cardinality 4 > w there is a saturated model for a given totally
transcendental theory. For a totally transcendental theory any two prime over some set
models are isomorphic over this set [30, P. 107]. Totally transcendental theories of a
rank were investigated by A. Lachlan. He gave a complete description of all possible
spectrum functions of rank 2 and degree 1 [34]. B.S. Baizhanov extended the full
description of spectrum functions for an arbitrary degree n and rank 2 [35], meanwhile
he specified the list of spectrum functions for the degree 1. In year 1978 A. Lachlan
introduced an important result in the study of spectral functions, proving that in class
of totally transcendental theories, there is no constant functions except for uncountably
categorical, and the most important, that every function is non-decreasing.

Theorem [36]. If T is a totally transcendental theory, then for the spectrum S;
one of the following possibilities holds:

1) S;(wg) =1 foreveryordinal ¢ = 1 and Sy (w) € {1, w};

2) Sp(wy) = |a] for « = w for all ordinals a and S;(w,) = |a + 1|%;

3) Sr(wy) = |a + 1|® forevery a = 1; and

4) Sr(wg) = w!¥ for every ordinal a.

The case 4) in this classification has great uncertainty. Lachlan hypothesized that
in this case spectrums of totally transcendental theory are limited to the following
range:

a) Sr(wy) = ¥ | a>1;

b) Sy(wy) = 2%, a = 1;

C) Sr(wy) = max(2%, w!*)), a > 1.

B. Baizhanov [37] extended this list, he constructed for every ordinal y < w,
totally transcendental theories which have the following spectrums:

d) Sr(wy) = min(2%«, B(la + 1|,¥7)), a =1 (where the cardinal S(x,a) is
defined by induction and is the standard definition in axiomatic set theory);

e) Sr(wy) = min(2¥%, B(la + 1|%,y)), a = 1.

About this B.S. Baizhanov’s extension it was told in the review article by E.A.
Palyutin [38]. A. Lachlan [34, P. 153] and B.S. Baizhanov [39] identified a condition
that provides maximality of the number of countable models in all uncountable
cardinalities (Lachlan for rank 2, by Baizhanov it was generalized to the class of
omega-stable theories), based on dimensions of types associated with various copies
of one formula, defined by different constants, connected by a non-trivial relation in
the realization of a type (connected type). In the next decade the results of A. Lachlan
and B.S. Baizhanov were strengthened, absorbed and blocked by numerous at that time
works dedicated to spectrum of superstable and omega-stable theories. For omega-
stable theories, the condition of existence of a connected type, magically re-opened in
other terms (later named by Shelah, the dimensional order property, dop), together with
the condition of an infinite depth constituted a necessary and sufficient condition for
the spectrum of omega-stable theories to be maximal.
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Spectrum of superstable theories.

Finally, the spectrum problem was solved by Shelah in the second half of the 80’s
for the class superstable theories, and hence for the class of all complete countable
theories [40], and Hart-Hrushovski-Laskowski carefully considered all non-obvious
places in the proof of Shelah, closing all gaps in the proof [41]. Note that the list of
spectral functions for superstable theories is different from the list for omega-stable
theories with adding e’), where instead of w in the exponent in the definition of beta
function e) 2¢ is used.

Number of countable models.

The Lachlan problem. After A. Lachlan proved that every superstable theory
can not have a finite number of non-isomorphic models except 1 [42], he formulated
the problem that existence of a stable theory which has a finite number of models up
to an isomorphism. T.G. Mustafin proved that given a stable theory which has a non-
principal superstable type, the countable spectrum of such a theory can not be finite
[43]. S.V. Sudoplatov constructed a stable theory that has a finite number of countable
models up to an isomorphism [44].

The Vaught Conjecture. The conjecture states that the number of countable
non-isomorphic models of a countable theory can be either finite, countable, have
cardinality of a continuum, or have an intermediate cardinality between a countable set
and the continuum (I(T, w) € w U {w, w4, 2°}). Vaught proved [6, P. 320], that this
number can not be equal to 2. As it was said earlier, a small theory is the theory, number
of n-types of which is not maximal for every finite n. If a theory is not small, the
number of its countable models is maximal, that is, 2*. As mentioned above, J.T.
Baldwin and A. Lachlan confirmed the Vaught conjecture for the class of uncountably
categorical theories [7, P. 70]. For the class of omega-stable theories the conjecture
was confirmed by S. Shelah, L. Harrington and M. Makkai in [8, P. 259]. Laura Mayer,
using D. Marker’s theory of orthogonality of 1-types in o-minimal theories [9, P. 63],
confirmed the Vaught conjecture for the class of o-minimal theories [10, P. 157]. The
Vaught conjecture for quite o-minimal theories was proved by S.V. Sudoplatov and
B.Sh. Kulpeshov [11, P. 131].

The question about the number of countable models is described in the works of
many scientists. The other works on this subject that are referenced by many authors
are written by S. Shelah [45], A. Pillay [46] and M. Benda [47]. One more work is the
article [48] of S.V. Sudoplatov and R.A Popkov, which classifies the theories which
have the continuum number of types (and therefore the maximal number of models)
according to different criteria. In his work [49] Enrique Casanovas studied the number
of countable models from the different sides of view: semi-isolation, Rudin-Keisler
order, smooth classes and closures, predimensions, dimension and stability. In the work
[50] B.S. Baizhanov and B. Omarov considered the number of countable
nonisomorphic models from the aspect of the notion of finite diagrams. At the present
time there is no answer on the Vaught conjecture but model theory specialists continue
to work on it, in particular S.V. Sudoplatov [51] jointly with B.S. Baizhanov and V.V.
Verbovskiy [52].

The number of countable models of theories with an @-definable relation of a
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linear order had been studied in the works [10, P. 146; 11, P. 129; 53-57] and others.
The question on the countable spectrum of theories which have a linear and a partial
order has a big place in the dissertation, since it is of a big importance in studying the
class of dependent, non-stable theories.

15



2 PRELIMINARY INFORMATION

In this section we introduce basic concepts of model theory as well as the main
tools used in this branch of mathematical logic.

2.1 Theories. Basic tools: Tarski-Vaught test, Compactness, Theorem of
Existence of a Model, Omitting types

Given an g-structure It we denote Th(M) ={p €L | WM E ¢}.

Theorem 2.1.1 [3, P. 15] Let T be a consistent theory. Then the next points are
equivalent:

a) The theory T is complete;

b) All models of T are elementary equivalent;

c) There exists a structure Mt with Th(M) =T.

Note that if structures are elementary equivalent, then they have the same theory,
and the other way, if the structures are of the same theory, then they are elementary
equivalent. By Mod(T) we denote the class of all the models of theory T.

Definition 2.1.1 [1, P. 34] An f-theory T is called inconsistent, if T - (¢ A
—¢) for some formula ¢. Otherwise the theory it is consistent.

Theorem 2.1.2 [1, P. 34] (Gédel’s Completeness Theorem) Let T be an £-
theory, ¢ be a sentence of the language £. Then T & ¢ ifand only if T + ¢.

Corollary 2.1.1 [1, P. 34] A theory T is a consistent theory if and only if it is
satisfiable.

An g-theory T has the witness property if given an 1-8-formula ¢ (v), there is
a constant ¢ € £ such that T & (v @(v) = ¢(c)). The theory T is said to be a
maximal theory if for every sentence ¢ either ¢ belongs to the theory T, or its
negation [1, P. 34].

Theorem 2.1.3 [1, P. 34](Malcev’s Compactness Theorem) A theory T IS a
satisfiable theory if and only if every its finite subset is satisfiable.

Here are listed some base properties of satisfiable theories.

Lemma 2.1.1[1, P. 35] Let we are given is a finitely satisfiable maximal 2-theory
T.Thenif A € T isafinite subset and 4 & 1, then € T.

Lemma 2.1.2 [1, P. 35] Let we are given is a finitely satisfiable maximal 2-theory
T which has the witness property. Then the theory T has a model. More precisely, if
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k is a cardinal and there are no more than k constant symbols in the language £,
then there is a model Mt = T such that || < k.

Lemma 2.1.3 [1, P. 38] Let T be a finitely satisfiable theory of a language £,
and ¢ to be an L-sentence, then either the theory T U ¢ or the theory T U —¢ is
finitely satisfiable.

Corollary 2.1.2 [1, 38] Let T be a finitely satisfiable theory of a language £,
then there exists a maximal finitely satisfiable £-theory T’ with T' 2 T.

Proposition 2.1.1 [1, P. 40] Let we are given an £-theory T which has infinite
models. If k¥ = |€] is an infinite cardinal, then there is a model of T which has the
cardinality k.

A theory T is called categorical if it is a consistent theory and all its models are
pairwise isomorphic.

Given an infinite cardinal x and a theory T which has models of size k, T is
called to be Kk-cathegorical if any two arbitrary models of cardinality x of the theory
T are isomorphic to each other [1, P. 40]. For an w-categorical theory we have
(T, w) = 1.

A structure Mt is said to be a-categorical if its theory is a - categorical.

Following the definition, a complete theory which has exactly one countable
model up to an isomorphism is called to be w-categorical (or X,-categorical).

Theorem 2.1.4 [1, P. 42] (Vaught’s Test) Given a countable theory T which has
no finite models. If the theory T is k-categorical in an infinite cardinal k, then T is
complete.

Proposition 2.1.2 [1, P. 45; 3, P. 18] (Tarski-Vaught test) Suppose that M is a
subset of a universum of a structure 9t. Then, M is a universum of an elementary
substructure 9 of N if and only if for every formula ¢(v,w) and every a € M,
existence of b € N with 9t = @(b, @) implies that there is an element ¢ of M such
that N &= ¢(c, a).

The Tarski-Vaught test is one of the main tools used in the dissertation during
construction of models.

Theorem 2.1.5[1, P. 45] (Upward Lowenheim-Skolem Theorem) Let we are given
an infinite {-structure M, let k¥ > |[M| + |&|. Then there exists an £-structure 9
with |N| = k and j: It = 9N elementary.

Theorem 2.1.6 [1, P. 46] (Downward Lowenheim-Skolem Theorem) Let we are
given an g-structure 9t and a subset X € M. Then, there exists an elementary
submodel 9t of Mt with X € N and |N| < |X| + |8| + R,.
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Definition 2.1.2 [2, P. 42] Let we are given an -structure 9t. An n-type of I
overaset A isaset p(x) consisting of formulas of the extended language £(A), such
that for some a, a tuple of elements of M, It &= ¢(a) holds for all formulas ¢(x) of
the type p.

In this case we say that the model 9t realizes the n-type p. If no elements of M
realize the type p, Mt is said to omit p.

An n-type p(x) is said to be complete if for every formula ¢(x) € M(A, x)
either ¢(x) € p(x) or =@ (Xx) € p(X), that is the type is maximal. By S,,(T) we will
denote the set of all complete n-types of the theory T. In the dissertation we will
usually work with complete types.

A principal type is a type p(x) such that there is a formula ¢ (x) such that for
every 6(x) € p(x), I E @(x) — 6(x). This formula ¢ is said to be an isolating, or
a principal formula of the type p.

A type p € S(A) is said to be algebraic, if there exists an integer n < w such
that |p(M)| < k forevery model 90t = T(A). Itis easy to see that every algebraic type
Is isolated.

Proposition 2.1.3 [1, P. 116] Let we are given an g-structure M, let A € M, and
p be an n-type over A. Then there is such an elementary extension 9t of It that
realizes the type p.

Theorem 2.1.7 [1, P. 125] (Omitting Types Theorem) Let we are given a theory
T of a countable signature &, and let p € S,,(T) be a non-isolated n-type. Then the
theory T has a model omitting p.

The previous theorem can be easily generalized to a case with a countable set of
nonisolated types.

Theorem 2.1.8 [1, P. 127] Let we are given a theory T of a countable signature
L. Let py, P2, Pk ---€ Sp(T) be a countable family of non-principal types of T.
Then the theory T has a model omitting every of these n-types.

Definition 2.1.3 [2, P. 134] Let It be a structure.

1) An algebraic closure, acl(A), of theset A € M istheunion of all A-definable
finite sets of singletons. That is, acl(A) ={b € M | there exists a formula
p(x,a),a €A, and a natural number n<w such that M E @(b,a)A
I 'xp(x,a)}.

2) A definable closure, dcl(A), of the set A € M is the union of all A-definable
sets of singletons of cardinality 1. Thatis, acl(A) = {b € M | there exists aformula
o(x,a),a € A, suchthat M = @(b,a) A 3= xp(x,a)}.
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2.2 Main Kinds of Models and Theories. Dependent Theories

A model M of T is called a prime model of the theory T if for every other
model N = T there exists an elementary embedding from 9t into 9t. A structure
I =T isatomic if for all tuples a € M™, tp(a/®) is a principal type. For complete
countable theories the notions of a prime and of an atomic model are equivalent. In
general, a model is prime if and only if it is both prime and atomic. Also, all prime
models of the same theory are isomorphic [3, P. 59].

Let k to be an infinite cardinal. A structure Mt of a language & is k-saturated
if for every family F = {D;;i < k} consisting of definable subsets of the structure M
with the finite intersection property, there exists an element a € M, with a € N;< D;.
A model 9t is called saturated if it is |M|-saturated, that is for all A c M, if |A| <
|[M| and p € S,,(A), then p isrealized in 9.

A weak form of saturation is homogeneity. A model M =T is called
homogeneous if for every subset A € M, with cardinality of A less than the
cardinality of M, for every partial elementary map f: A - M and every a € M, there
exists a function f* 2 f for which f*:Au{a} - M is also a partial elementary

mapping.
Theorem 2.2.1 [1, P. 138] If a model is saturated, then it is homogeneous.

Theorem 2.2.2 [1, P. 145] Any two countable models of a same complete theory
of a countable language which are homogeneous and realize the same @-definable n-
types for every n > 1, are isomorphic.

The previous theorem implies that if there is a countable family of nonisomorphic
models which realize the same @-definable n-types for every n > 1 (that is, they
have the same finite diagram), then all of them, except maybe one model, are not
homogeneous.

A model is universal if every model of the given theory of the same cardinality
can be elementarily embedded into it.

Below we present the main kinds of theories. Examples and a nice visual
representation can be found at the website [58].

A formula ¢(x,y) has the independence property (or IP), if there exist two
sequences a;, i < w and by, with I € w for which & ¢(a;, b;) © i € I. Atheory is
called dependent (NIP) [59] if all its formulas are NIP, that is no formula of the theory
has the independence property.

A formula ¢(x,y) has the strict order property (in short SOP) [59, P. 33], if
there are such tuples a;, i < w, for which

E 3x(p(X,a; A —@(%,a;)) © i <.
A theory is called to be NSOP if no its formula has the strict order property.
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A countable theory T is A-stable, if |S,,(A)| < A for every subset A with |A| <
A forall structures 9 = T. A theory is said to be stable [2, P. 308] if there is an infinite
cardinal A such that T is A-stable. A theory T is called superstable if there exists
such a cardinal x that the theory T is A-stable for every A1 > k [2, P. 310].

A theory is a strongly minimal theory if in every structure It =T every
definable set of 9t is either finite or cofinite [1, P 78]. Every strongly minimal theory
IS w-stable, every w-stable theory is superstable, every superstable theory is stable,
and every stable theory is dependent (NIP) and NSOP.

A class of theories that both NIP and SOP includes an important subclass of o-
minimal theories, which, in its turn, a subclass of weakly o-minimal theories.

A theory T of (an extension of) a linear order is called an o-minimal theory [60]
if in every model I = T every definable subset of M can be represented as a finite
union of points in M and intervals with endpoints in M. The theory T is said to be
weakly o-minimal if for each model 9t = T every definable subset of M is a union
of a finitely number of convex sets in M. This class will be given more attention in the
Section 8.

2.3 Number of Countable Models. Small Theories

Let T be a countable complete theory, 9t be a model of T. The number of
different up to an isomorphism models of T of cardinality A is denoted by I(T, A).

Theories with a finitely many, but more than one, countable models are called
Ehrenfeucht theories.

Theorem 2.3.1 [61] Let £ be a countable first order language. Then there are at
most 2“ many countable models for the language £.

A theory which has no more than countable number of no more than countable
models is small. But the converse is not true.

Lemma 2.3.1 [49, P. 2] Let we are given a theory T of a countable language.
Then [S,,(T)| > w implies |S,(T)| = 2¢, n < w.

Let us recall that

Definition 2.3.1 [3, P. 53] A theory T is small if for every natural number n < w,
152.(0)] = w.

Lemma 2.3.2 [49, P. 1] The following points are equivalent:
1) The theory T is a small theory;

2) For every n < w, and for all finite sets A4, |5,(4)| < w;
3) For all finite sets A, |S;(4)| < w;

4) T has a countable saturated model.
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Proposition 2.3.1 [49, P. 2] 1) All the countable w-cathegorical theories are
small theories.
2) All the w-stable theories are small theories.

Proposition 2.3.2 [4, P. 154] If we are given a small theory T, then for every
finite subset of a set A there exists a prime model over A.

Fact 2.3.1[49,P. 2] If k > |T|, then I(T, k) < 2*.

Theorem 2.3.2 [49, P. 2] If T is a non-small theory, then I(T, w) = 2¢, that is
the number of countable models of T up to an isomorphism is maximal.

Thereby, Theorem 2.3.2 allows us to narrow down the problem of countable

spectrum of complete countable theories to investigating the countable spectrum only
of those theories, which are small.
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3 FINITE DIAGRAMS

Let T be a countable complete theory. As always, by S(T) we will denote the
set of all the complete types of the given theory T over an empty set.

Hypothesis 3.1 [50, P. 1] Let we are given the following countable sets of types
{pi eS(T) | i<w}and {q; € S(T) | i < w}, and all the types are non-principal.
If for every natural number n < w there exists a model 9t,, of theory T, in which for
every i < n the types p; are realized and the types g; are omitted, then there exists
It = T which is countable and such all the types p;, i < w are realized in 9t and all
the types g;, i < w are omitted in this structure.

Definition 3.1 Given a structure 9t = T D(IM) denotes the set consisting of all
complete types which are realized in the structure It: D(IM) ={p € S(T) | M E
p}. We call the set D(M) the finite diagram (or dowry) of the model k.

In [62] the following theorem has been proved.

Theorem 3.1 [62, P. 50] Under condition of Hypothesis 3.1, if the theory T has
more than w of different finite diagrams, then I(T, w) = 2%.

Proof of Theorem 3.1 By A let us denote the set of all the finite diagrams of all
models of theory T : A={D | 3M € Mod(T),D(M) = D}.

Lemma3.1Let |S(T)| = w, |A| = w4, then thereis p,, a type for which |4,| =
w,; and |4;] = w,, where

Ao ={D(M) | po€D(M) €A},
Ay ={DR) | po&DAM) €A}

Proof of Lemma 3.1 Let p;,p,,..., Py, ... Dealistof all non-principal types from
S(T). Forany n atype p, divides the set A into two parts, A7 and A", where

AP =@ | p,eD@M)E A}
AP =@ | p,EDE)E A}

Towards a contradiction assume that the lemma is not false. Then, for every
natural number n, we have either |A%Y| < w or |A™] < w.

Let B, = A%, if |A%Y| < w; B, = A%, if |AYY| < w.

Since for any n |B,| < w, |Upcew Bnl < w. And therefore |A\ U<y Bnl =

w,. Take two different elements D; and D, from A\ U, <, B,. There exists a type
pm Suchthat p,, € D; and p,, € D,.
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There may be two cases:

1) B, = A% . In this case, p,, € D; €A™ =B,,. But D; € A\ Unce Bn,
therefore, D; € B,,,. And we obtain a contradiction.

2) By =AY . In this case, p,, € D, € AU = B,,. But D, € A\ Upcy, Bn,
therefore, D, £ B,,. And we obtain a contradiction.

O

In order to proof the Theorem 3.1 consider two cases:

1) |S(T)| > w. Inthiscase [S(T)| = 2¢, I(T,w) = 2¢.

2) |S(T)| = w. Consider an arbitrary listing t4,t,,...,t,,...; t, € S(T) of all
non-principal types from S(T).

We will construct a tree by the following steps:

Step 1. By the Lemma 0.1 we will find the smallest number m, such that

Ao ={DW) | ty €D(M)E A}
A={D) | t,e€DEM) €A}

Aol = wq, [A] = wy.

Step k-1. On this stage we will have 2%-1 disjoint sets A, with |A;] = wq,
where 7 € {0,1} and length of 7 isequal to k — 1.
Step k. For any t let m, be the smallest with the property

ATO ={DA) | tm, € D(IM) € A}
Arl ={D(M) | tm, £ D(M) € A},

|AT0| 2 wl’ |AT1| 2 wl'

On this step we have 2% sets, each of which has cardinality greater or equal to
wy, and forany 7, # 1, A, NA,, = 0.

Each branch of 2“ branches of the obtained tree, will be characterized by a
SEQUENCE Ly, by, »-vvs bimy, oo of types, which we can divide according to belonging

of the type tm, 10 the finite diagrams of the set A, , into two sequences:
Do»P1s-++»Dks+ AN qo, Gy, -+, Qg - If L = Py, then, beginning from i there are
models M,, of T, n > i, such that p, isrealized in all the models M. If t,, = qx,

then, beginning from i there are models M, = T, n > i, which omit the type q.
Therefore, by the Hypothesis 3.1 there are a countable model 9t, which will
realize all the p;, and omit all the g,. And all models corresponding to the different
branches of the tree will be non-isomorphic since they differ in the collections of types.
Thus, there are 2% countable non-isomorphic models.
O
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Corollary 3.1 [62, P. 52] Under condition of Hypothesis 3.1, if there exists a
theory T which is countable and has w; countable nonisomorphic models, then there
Is such a finite diagram D € A, for which D = D(I;), M; € Mod(T), i < w;.

That is, there are at least w,; models of T having the same diagram.
Proof of Corollary 3.1 The Theorem 3.1 implies that
Al > w = (T, w) = 2%,

Then, I(T, w) < 2% implies that |A| < w. Therefore |A| < w.

Suppose that the Corollary 0.1 does not holds. Then, for any finite diagram D;
HUA | AET, D) =D} < w.

Therefore, |Upea (U | AET,D(A) =D;}| < w, what is a contradiction

with our assumption that I(T, w) = w;.
O

Corollary 3.2. [15, P. 170] Under condition of Hypothesis 3.1, if there exists a
countable complete theory which has w; countable nonisomorphic models, then
there exists a finite diagram which has w, countable nonisomorphic non-
homogeneous models.
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4 WEAK AND ALMOST ORTHOGONALITY

Definition 4.1 [45, P. 230] Two types p(x) and q(y) from S(A) are called
weakly orthogonal, if p(x) U q(¥) has a unique extension to a complete type over
the set A.

The relation of weak orthogonality of two types p and q is denoted by p L% gq.

The types p and g are not weakly orthogonal, which is written as p X% g, if
the number of extensions of p(x) U q(¥) to a complete type at least equals to 2.

It is obvious, that

Fact 4.1 If in a countable small theory T for any finite set of types

{P1(x), ..., 0 | i €ST)n<w}, (prUpU..UPy) (X1, X,..., %) IS @
complete type, then I(T, w) = 2¢.

Definition 4.2 [62, P. 43] The types p and g are called to be not almost
orthogonal if for some formula ¢(k,y), and some model 9t = T realizing p, such
that for a tuple @ € p(M), we have @ + (M, @) c q(M).

The relation of not almost orthogonality of types p and q is denoted by p £¢ g.
Otherwise, the types are called almost orthogonal, p L¢ g.

The notions of weak and almost orthogonality of types are of a big importance in
the direction of the dissertation, since, even when they are not noted explicitly, they
are present in every main concept and proof we will encounter.

Definition 4.3 Let I be a locally consistent set of formulas, g be a type from
S(T). The family I" is almost orthogonal to the type g, written as I L¢ g, if every
extension of the set I" is almost orthogonal to the type q.

Proposition 4.1 The types p and g will be not almost orthogonal, g £% p ifand
only if there exists such a formula ¢ (X, y), that for each model 9t realizing T with
the condition It & p, for every a@ € p(M) we have @ # (M, @) c q(M).

Proof of Proposition 4.1 The part “if”” is obvious.

We know that 3@ ¢(M,a) c q(M) = Ngeq 6(M). Therefore, we have that
o(M,x) c (M) for every formula 6 from the type q.

The following holds M & Vix(p(x,a) = 6(x)) for every 6 from q. Denote
VX(p(x,a@) = 0(¥)) by Ko(@). Ko(@) € p.

Let, for some M =T, a' € p(M") . Therefore, M = Ky(a') . M E
Vi(p(x,a’) —» 6(x)) for every formula 6 from the type q.

We have that o (M',a’) c 6(M") for every formula 6 from the type g. Which
follows that, (M, &") € Ngeq (M) = q(M").

m|
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The following are important facts about types and their relations which are used
during the next sections.

Lemma 4.1 1) Let p, q € S(A), p be principal, g be non-principal. Then
pL%q.

2) Let we are given a small theory T, and let 9t = (M, X'), then for each formula
Y(x,b), b € M there is a subformula ,(x,b) such that y,(x,b) determines an
isolated type over b.

3) [13, P. 47] Let p, q € S(A), q be non-principal, 9t = (M, Y) be a model of
a small theory T, and A ¢ M be a finite set. Then the types p and g are almost
orthogonal if and only if for ¢ = p and every type q' € S(A¢) for which g(x) c
q'(x, ¢) we have that the type q'(x,¢) is not principal.

4) If tp(¢d/b) £* q(x,b) is non-principal, tp(d/c) is principal, then

tp(c/b) £% q(x,b) . Equivalently, if tp(¢/b) L% q(x,b) is non-principal,
tp(d/c) is principal, then tp(cd/b) L% q(x, b).

Let q(x,b) be non-principal, tp(¢éd/b) L* q(x,b) and tp(d/éb) be
principal, then tp(c/b) L* q(x,b) . If tp(c/b) L* q(x,b) and tp(d/cd) is
principal, then tp(¢d/b) L% q(X, b).

S5)Let be M, c € N M, ,o(x,b,c) definesaprincipal type over bc, q(x,y) €
D(M). Then the following holds: if g(N,b) N M = @ then ypy(N, b,¢) < q(N, b) or
Wo(N,b,&) N q(N,b) = 9.

Proof of Lemma 4.1 1) Let us suppose that p X% q. Then for some realization
a € p(M) there is a formula ¢(x,y) having the following property @ + ¢ (M, a) C
q(M). Since p(¥y) isa principal type, there is exists isolating formula 6(y) for which
p(M) = 6(M). Now let us consider the following A-formula H(x):= 3y(8(y) A
@ (x,¥)). Sowe have H(M) c q(M), what contradicts to g being non-principal.

2) Note that if the formula (X, b) has no subformulas defining an isolating type,
then every its subformula has the same property. Consider an arbitrary subformula
Y, (%, b) € Y(x,b). Then the formula v, (%, b): = Y(X,b) A —p, (%, b) is a proper
subformula of (%, b). Therefore for every finite sequence t = (t4,7,,...,T,) of 0’s
and 1’s we can choose the following sequence of b-definable formulas: ¥, (X,b)
We 1,0, (% D) C...c P, (X, b). The last means existence of an infinite 2-branching

tree of b-formulas, what contradicts with T being small.

3) Now let p L2 q. Towards a contradiction suppose that that is there is ¢, € M
with ¢, & p, there is a type q' € S(A¢,), such that q'(x,¢,) is principal, and
q' (M, ¢,) € q(M). Since q' is a principal over Ac,, there exists 8(x,¢,), an Acy-
formula , such that q'(M,¢,) = 6(M,¢,) and therefore, q'(M,¢c,) < q(M), what
contradicts to the condition of almost orthogonality of the types p and q.

Let every extension of the type g over A and any realization of the type p is a
non-principal type. We will obtain a contradiction by supposing that p £¢ g. From the
last it follows that there exist ¢, = p and an Ac,-formula ¢(i,c,) such that

26



o(M,cy) € q(M). Then by the point 2) it follows that there exists an isolating
subformula ¢,(M, ¢,) € (M, c,) < q(M). Then for some principal type g’ we have
the following:

©o(M,¢y) = q'(M,¢o) © q(M),

what is a contradiction, since any extension of the type g over any realization of p is
a non-principal type.

4) If tp(c/b) L% q(x,b), then every type q(x,b) c q'(x,b¢) is non-principal.
By the condition 3) th(d/cb) L aq’(x/ch) for every q'(x/ch) extending q'(x, b).
The last means that every q"'(x/bcd) extending q’(x, b) will be non-principal. Then
tp(dc/b) L% q(xb). Let us suppose that tp(dc/b) £* q(xb). Then there is a formula
6(M,bd,c) c q(M,b), and by the condition 2), (X, bd,¢) can be considered to be
isolating for some principal type q''(x/bd¢). Thatis, q’'(x/bd¢) is a principal type,
what contradicts to the obtained condition that all the types g are non-principal.

5) In fact, we used the condition of almost orthogonality while formulating the
point 5) in the following sense: tp(¢/b) L% q(x,b) implies yo(N,b,&) N q(N,b) =
@.

O

Proposition 4.2 If p and q are two types from S(T) with p £% q. Then, if some
model I = T realize the type p, then the type q is also realized in IX.

Proof of Proposition 4.2 The Proposition states, that the realization of p in some
model of T implies the realization of g in the same model. In other terms, p is
powerful over gq.

If p is realized in some structure Mt = T, there exists an element @ € p(M). By
the definition of an almost orthogonality, there is such a formula ¢(x,y), that @ #
o(M,a) c q(M), what means, that g(M) is not empty, therefore q is realized in .

m|

The type r € S(T) is called to be dominated by a type t € S(T), or in other
words r does not exceed the type t, by the Rudin-Keisler preorder, denoted as
r <gg t, If M; & r, thatis, M, is an elementary submodel of Mk,.

If p £% q, then q <zx p. In small theories these two notions coincide.

As in the previous section let us denote

A,:= {D] there is a model M € Mod(T), for which M = p, D(M) = Dj}.
Then,if p £% q, A, € A,.

Theorem 4.1 [62, P. 53] Let we have a countable small theory T, and let {r;|i <
w} be a countable set of all non-isolated types from S(T'), then
1) If for every r; # rj, r; L% 73, then I(T, w) = w.
2) If for every finite subset {r; ,...,7; } of {r;}
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(r,Ur, U...un ) L%n, k < w,
then I(T, w) = 2.

Proof of Theorem 4.1 1) Take an arbitrary n € N. Since r;, L% 13, Vi #n, i <
w, realization of r,, does not imply realizations of r;. Therefore, by the Theorem 0.1,
there exists a model Mt,, realizing the only type r,.

Since Vvn,m € N n #m implies I, = IM,,,, there exists at least countable
number of models.

2) Let T be a countable sequence of 0’s and 1’s. Divide {r;} into two ordered sets
of types, namely, {p;} and {q;}, for which r, =p, if (i) =0 and r; = q; |if
(i) = 1.

Forevery n € N let us take the finite parts of the sets {p;} and {q;}: {p1,---, Pn}
and {q4,...,q,}. Take a prime model 9t,, over any extension of (p, U...Up,). Since
(p1 U...Up,) L% q;, 1 < i < n, their realization does not imply realization of the
types q;, 1 <i < n. Therefore, there the model Mt,, will realize all p;, and omit all
qi» i < n. Then, we can construct a model 9, realizing all p; and omitting all g;.

By construction, for every t there there exists a model 9t,. And all these models
are not isomorphic, since they differ in at least one type. Therefore, I(T, w) = 2.

O

Theorem 4.2 [62, P. 54] If the countable theory T is small, and the countable set
{r, e S(T) | i < w} of all non-isolated types with r; X% r;,; and r;,, L% r;, then
the number of non-isomorphic countable models of T at least will be countable, that
is, I(T,w) = w.

Proof of Theorem 4.2 We will construct a model 9t,, for every natural number
n. If a model IN; realize a type r;, then by the Proposition 4.2 it realizes all the types
i, > L.

The model 9, realize a type r; and, consequently, all the types r;, i < w. In
the model M;, by the Omitting Types Theorem, the types r;, j < i are omitted, and,
since 7,4y L% 1, the types r;, j =i are realized.

m|
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5 LINEAR ORDERS AND EXTREME TRIVIALITY

In this section, like in study of o-minimality, we restrict to theories whose models
are linearly ordered. But rather than the global hypothesis that all definable subsets are
definable with just the order, we posit conditions on particular types and on the
underlying linear order which imply the existence of continuum many countable
models.

In the article [53, P. 392] M. Rubin investigated theories of pure linear orders and
their expansions using finite and countable sets of unary predicates. He proved that
such a theory T has the countable spectrum to be either finite or 2¢, and in case of
finiteness of the language of T is finite, then T is either w-categorical, or it has the
maximal number of countable non-isomorphic model. Thus M. Rubin solved the
Vaught Conjecture for linear orders expanded by unary predicates. In our results there
will be no restriction on language.

Further in the section as usual we will consider small theories. Given a finite
subset A € M of a model M =T , we will denote T(A): = Th(M, a) ,c4. Note that
if T is a small theory, then the T (A) is a small theory as well. Also the condition of
T being small implies existence of a prime model, Mi(A), of T over the finite set A,
and of a countably saturated model of T. If a,, a,, ..., a, € M, n > 1, are some
tuples of elements of M, then M(a,, a,,...,a,) will mean a prime model of T over
the set of all elements belonging to those tuples.

5.1 Variants of triviality

Definition 5.1.1 [63] Let T be a small complete theory, p(x) be a non-principal
type over a finite subset A of some model of T.

1) The type p is called extremely trivial, if for every natural number n > 1 and
every sequence f3;, B,, .., of elements realizing the type p, we have that
p(M(B1, Bz, --» B, @) = {B1, By... Bn}, Where a is some enumeration of the set A.

2) The type p isalmost extremely trivial, if for every n > 1 and every sequence
B1, B2, ..., realizing the type p, p(M(By, B, - .., B, @)) is finite.

3) The type p is said to be eventually extremely trivial, if for every natural
number n > 1 there is m > n and realizations S, 85, .5, Of the type p for which

P(M(B1, By, B @) = {B1, B2, B}

It is easy to see that every extremely trivial type is almost extremely trivial, and
every almost extremely trivial type is eventually extremely trivial.

Example 5.1.1 [63, P. 720] Let £ = {=, P;};<,, Where the P; are unary, and let
T bean L-theoryand thatthe P, are a decreasing sequence of sets with each P; — P;,
infinte. It can be axiomtized as follows.

1) Vx (Piy1(x) = Pi(x)) forall i < w; and

2) 3"x (P;(x) A =P;1(x)) for every natural number n < w, and i < w.
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Then the type p(x): = {P;(x) | i < w} is extremely trivial, and the theory T
has X, countable models.

Example 5.1.2 [63, P. 720] Let £ = {=, P;,R};.,, With the P, unary and R
binary, k > 2 be an integer, and Ty, be an L-theory that asserts the P,’s are a
descending sequence of definable setsand R is a relation of equivalence with infinitely
many classes, all of cardinality k and such no equivalence class can be split by a P..
Axioms:

1) Vx  (Piy1(x) = P;(x)) forevery i < w;

2) 3*"x (P;(x) A P41 (x)) for every natural n < w, i < w;

3) Vx R(x,x);

4) Vxvy (R(x,y) = R(y,x));

5) vxvyvz ((R(x,y) AR(y,2)) = R(x, 2));

6) Vx3=%y R(x,y); and

7) VxVy ((R(x,y) AP;(x)) = P;(y)) forevery i < w.

Let p(x):= {P;(x)| i < w}.Thetype p(x) isalmost extremely trivial, but is not
extremely trivial. This theory has &, countable models: for every natural number n, a
model with exactly kn realizations of p.

Example 5.1.3 [63, P. 721] Let £ = {=; <; P;};<,, With the P; unaryand T be
an L-theory axiomatized by the following:

1) < is adense linear order without endpoints;

2) P;’s are dense codense disjoint predicates.

The type p(x): = {=P;(x) | i < w} is extremely trivial. This theory has 2o
countable non-isomorphic models.

The following example including a unary function shows that our results extend
those of M. Rubin [53, P. 392].

Example 5.1.4 [63, P. 721] Modify Example 5.1.3 by adding a constant symbol
0 and a unary function f satisfying f%(x) = x, f(0) =0 and x >y > 0 implies
fx) <f(y) <0.

The type p(x): ={=P;(x) | i< w} isextremely trivial. By Theorem 5.2.3
this theory has 2% countable non-isomorphic models.

Definition 5.1.2 [63, P. 721] 1) An A-definable formula @ (X, V1, ¥,,..., Y, @)
with a and element of 4, is called a p-n-preserving formula, if for every sequence
B, B2y - [)’n_ realiz_ing the type 2 <p(f,,81,ﬁ2,._..,,8n, a) I—_p()?). o

2) If q(34,...,¥,) (n < w) is an A-type with 1SLianp(yi) U {151_4\]3" yi =y} €

q. An A-definable formula ¢ (x,y,,¥5,..., 9, @), @ € A, is called p-q-preserving, if
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for every sequence B, B, ..., B, realizing the type p, we have: tp(By,...,Bn) = q
implies (%, B1, B2, -+, B, @) + p(X).

3) A p-n-preserving (p-g-preserving) formula @ (X, y,,¥,,...,¥,, @) is non-
trivial, if for every model 9 & T and every realizations f;, 1 < i < n, of the type p
in M (with tp(By,... ,Bn/A) = q) the set (M, B1, B2, ..., B, @) contains at least
one element other than By, B,,..., By,

Proposition 5.1.1 [63, P. 721] Let the theory T be countable and complete,
p(x) € S(A) be a non-principal type over a finite subset A of some model of T. Then
the type p is extremely trivial if and only if for every n > 1 every p-n-preserving A-
definable formula is trivial.

Proof of Proposition 5.1.1 Further by a we will denote a tuple enumerating the
set A.

(=) Let p be extremely trivial, By, B, ..., B, (n = 1) be realizations of p, and
©(X,¥1,V2,---,Vn,a) be a p-n-preserving A- deflnable formula. Directly from the
definitions it follows that oM (B, By B @), Br, Bay. .., B, @) S
p((M(Br B, B @) = {Br, Bar-... B}

Therefore, the formula ¢ is trivial.

(<) Now suppose that for every n > 1 every p-n-preserving A-definable
formula is trivial. Take a finite number of arbitrary realizations of p, namely, £;, 55,

, B,,. Towards a contradiction let us suppose that there exists a realization f €

p((M(ﬁlr.BZr-' ,Bn, @) other than B, By, ..., Bn. Let @ (X, By, B2, -, Bn, @) be the

formula isolating the principal type p'(x): = tp(,B/_ﬁl, Bar s B a). Since p(x) €
p'(x), ¢ is p-n-preserving. And since ( A X # ;) € p’'(x), ¢ is non-trivial. This
1<isn

IS a contradiction.
m|
Proposition 5.1.2 [63, P. 722] Let we are given a countable complete theory T,
let p(x) € S(A) be a non-principal type over a finite subset A of a model of T. Then
the following statements are equivalent:
1) The type p is almost extremely trivial;
2) For every n>1, and for every A-type q(¥4,...,¥%,) with U p(y;) U

1<isn

{1 A ¥ = ¥;} € q, there exists no more than finite number of non-equivalent non-
<i#jsn

trivial p-g-preserving A-formulas, and for every realizations f3;,..., 5, With
tp(By,...,Pn/A) =q , and every p - q -preserving A -formula
O (X, V1, V2., Y, @), the formula @ (%, 51, Ba,. .., By, @) is algebraic;
3) For every n > 1, and every A-type q(¥1,...,¥,) With U p(yl) U

{ A ¥y =Yy} <q, there exist m =n and a type q (yl,.. ,¥m) 2 q such

1<i#j<n

that for each By, ..., By E q's DM (B, .., By @) = {B1s---, B}
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Proof of Proposition 5.1.2 Further by a we denote some tuple enumerating the
set A.

1) = 2) Let p be almost extremely trivial. Let ¢ (X, y;,¥,,..., ¥, @) be a non-
trivial p-g-n-preserving A- definable formula (n = 1), where q(¥1,...,y,) is some

A -type with U p(yl)u{ yi=y}Sq, ad By, By, ... Bn be some

<i< 1<L¢]<n
realizations of p . Since  @MByBy--., L 0), B Lo, @) S
p(M(By,By,..., B @), and p is almost extremely trivial, this set is finite, and
o(%, B4, Bo, ..., By, @) is an algebraic formula.
Now towards a contradiction suppose that there exist n>1, an A -type
q(V4,---,¥n) With U p(yl) U { yi = ¥;} € q, and an infinite family & of

1<1¢]<n
pairwise non- equwalent non-trivial p-q-preserving A-definable formulas. Let us take
any n realizations, Bl, By, .. ﬁn, of q. Forevery ¢(X,y1,¥2,...,¥n, @) € P the we
have @(M(By1, Bz, -+, B, @), ﬁl,ﬁz,-- B @) S PM(BL By B @)).

Since the set @ is infinite, and all the formulas from & are pairwise non-
equivalent, p(M (B4, B;,..., B, @)) should be infinite, what is impossible because of
almost extreme triviality of p.

2) = 3)Let n and g beasin3),and B, ..., B, be realizations of q. If every p-
q-preserving formula is trivial, then the desired type q’ is q itself, and the proof is
done. If not, then let us take an arbitrary element ¥ € p(M(By, By, @)\
{B1, B, ..., B,}. Denote by @(x, B, By, ..., n, @) an isolating formula of the principal
type tp(¥/B1, Pa---,Pny@) . Since @(x, B1, B2, ..., B, @) Fp, for every formula
Y(x,a) Ep we have & Vx(@(X, By, By, ..., 0y a) = W(x,a)). And therefore, the
formula Vi(p(X, V1,V ., Y, @) = P(X,Q)) belongs to the type
tp (B, Ba ..., Bn, @). Since the last holds for every formula (i, @) from the type p,
we have that the formula ¢ (X, y;1,¥,,..., ¥,, @) is non-trivial p-q-preserving. By 2)
this formula is algebraic, and then the set @(M (B, Bz, ---) By @), 1, Bas-- ) Py @) S
p(M(B1,By,..., B, @) is finite. This holds for every element 7€
p(M(B1, Bz -, B @)I\{B1, B2, - - -, B}, and since by 2) there exists only finite number
of non-equivalent non-trivial p-g-preserving formulas, the set p(M (B4, By, ..., B, @))
is finite, and is equal to {B1,B2,..., Bm}, where m >n,and B; = p forall i, n <i<
m. Denote by q’ the type tp(By, By, ..., Bm/Q), it is easy to see that q’ is the desired
type.

3) = 1) Now let we have an arbitrary n > 1 and realizations Sy, 8,,..., 3, of
p. Letus denote by g the type tp(By, Ba, ..., B, /@). By 3) there are m > n and a type
q¢(V1,...,¥m) containing the type ¢ , such that p(M(B'y,...,B m @) =
{B'1,....B'm} for every realizations B';, ..., B'n, = q' If we have m = n, then the
proof for this n is finished. Now take arbltrary Bri1s Brizs - and B, realizations
of the type p for which B; # ﬂ] forall 1<i<n and n+ 1 < j <m. Then the
following  holds:  p(M(By,...,Bn, @) S P(M(By, -, By @) = {Br--+, Bm}
Therefore p(M(f4,..., By, @)) is finite, and, since the proof is done for arbitrary n, p
IS an almost extremely trivial type.
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O
The following can be obtained as an easy corollary of the proof of Proposition
5.1.2.

Proposition 5.1.3 [63, P. 723] Let we are given a countable complete theory T,
and a non-principal type p(x) € S(A) over a finite subset A of some model of T.
Then the next statements are equivalent:

1) The type p is eventually extremely trivial;

2) For every n > 1, there exist m (n < m), and an A-type q(¥1,...,¥m) SUCh

that U p(F)U{ A ¥, =Yy} < q, there exists no more than finite number of
1<isn 1<i#j<n

non-equivalent non-trivial p-g-preserving A-formulas, and for every B, ..., B,, with
tp(By, ..., Lm/A) = q, for every p-q-preserving A-formula @ (X, 1, V2,... Vm, Q)
the formula @ (%, 81, By, ..., Bm, @) is algebraic;

3) For every n>1, there is such an A -type q(yi,...,¥,) for which
U np(yi) U{ A ¥y, =¥y;}<Sq,thereexist m>n andatype q'(Vy,...,Vm) 2 ¢

1<i< 1<i#j<n

such that for every By, ..., B, E q@', p(M(B4,..., B, @)) coincides with {B,,..., B }.
5.2 Number of countable models

Theorem 5.2.1 [63, P. 723] Let we are given a small complete theory T. If there
exists a finite subset A of some model of T and an eventually extremely trivial non-
isolated type p(x) € S(A), then I(TUtp(a/?),w) = w, Where a is a tuple
enumerating the set A.

Proof of Theorem 5.2.1 Since the type p is eventually extremely trivial, there
are my; > 1 and m, realizations f;, By, ... B, Of p Which are the only realizations
of p in My:=M(By, B2 ..., Bm,, @), the prime model over realizations. Then we
have |p(M;)| = m,. Analogically, for every i > 1 there exists a model 9t; (prime
over a finite set) with [p(M;)| = m; = m;_; + 1. Since all those models are not
isomorphic, there exists at least countable number of models of I(T U tp(a/d)).

|

Definition 5.2.1 [64] Let Mt be a linearly ordered structure, A< M, M be
|A|*-saturated, and p € S; (4) be a non-algebraic type.

1) An A-definable formula ¢(x,y) is p-stable if there exist a, y;, v, € p(M)
for which y; < ¢(a, M) <y, and p(M) N [p(a, M)\{a}] # O.

2) A p-stable formula ¢@(x,y) is called convex to the right (left) if there exists
such a realization a = p that « isthe left (or right) endpoint of the set ¢(a, M), a €
o(a,M) and p(M) N @(a, M) is a convex set.

3) A p-stable convex to the right (to the left left) formula ¢@(x,y) is said to be a
quasi-successor on the type p if for every realization a € p(M) there is [ €

@(a, M) np(M) with p(M) N [@(B, M)\p(a, M)] # .
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In the section 7 we will return to the notion of a quasi-successor formula, and we
will prove the following theorem:

Theorem 5.2.2 [65] Let we are given a theory T of (an expansion of) linear
order, let A be a finite subset of some model of T, and p(x) be a 1-type over A. Then
if there exists an A-definable formula quasi-successor on the type p, then the theory
T has 2% nonisomorphic countable models.

Lemma 5.2.1 Suppose that we are given small complete theory T of (an
expansion of) a linear order, which has less than the maximal number of countable
non-isomorphic models. Also let A be a finite subset of some model of the theory T,
and p(x) € S;(A) beanon-principal 1-type over the set A. Then for any two elements
a, B realizing the type p, {a < x < B} U p(x) is a consistent set of formulas.

Proof of Lemma 5.2.1 Towards a contradiction let us assume the contrary. Then
there exists a finite subset @ < p(x) which is inconsistent with the formula {a < x <
B} in T. Denote 8(x,a): = é\q, p(x).

%

Take a countable saturated model I = T with a, € M, and A € M. By our
assumption we have M = —-3x (e <x <L AO(x,a)).

Now let us take an elementary monomorphism which maps a to B. This
monomorphism can be extended to an automorphism f € Aut, (). Since a < 3, we
have B = f(a) < f(B), and analogically: f™(B) < f™**1(B), for every n € Z.
Therefore the set (M, @) contains an infinite discretely ordered chain

On the set (M, @) we introduce a binary relation <*, defined by the following
formula: x <*y:=x<yAlO(x,a) AO(y,a) AN=3z(8(z,a) Ax < z < y).

Consider the following set of formulas:

pOUpY)VU{x <yAVz(x <z<yABO(z,a)) = FuFu,(0(uy, a) A
O(u, ) ANx<u <'z<u,<y))}u {Elulfluz...Elun(1 AN OBy, a)Ax <
<Is<n

u <u, <...<u, <y}l

This set is consistent, therefore, it can be completed to a 2-type over A. Fix some
realization, y,, v, of the obtained type in the model ).

Let r(x) be a completion of the formula y; < x <y, to a type over AU
{ru7v2}

Then the formula ¢(x,y,a):=x =y Vv x <"y isaquasi-successor on r.

Therefore by Theorem 5.2.2 T U tp(a, B,V1, Y2, @) has the maximal number of
countable models up to an isomorphism. Since every model of the given theory T has
no more than w countable models of T U tp(a, B,¥1,V2, @), then I(T,w) = 2%,
which is a contradiction with the statement of the theorem.

O
Lemma 5.2.2 [63, P. 724] Let I be a structure of a countable small complete
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theory T, where A and D be finite subsets of M, and B is a countable subset of M.
For each (A U B U D)-formula, ¢(x,a, b,d), where a enumerates the set 4, b € B,
and d € D, there exists a type dy =q € S1(AVU B U D) such that

1) ¢(x,a,b,d) € q;

2) The set B can be written as union of finite subsets B,, such that for every n,
q/B,, is principal.

Proof of Lemma 5.2.2 Enumerate B as {b;,b,,...,b;,...}. For i < w denote
b;: = (by,b,,...b;), and let d' be a tuple enumerating the set D. Because the theory T
is small, there exists a formula ¢,(x,@,b,,d") that implies ¢(x,a,b,, d) and
generates a principal type over (4 U {b,,} U D). In turn there is a principal subformula
over (AU {b,.,} U D) that implies ¢, (x,a,b,,d"). Repeating this construction, we
will get a consistent infinite chain of decreasing principal over parameters formulas
@i, bpy,d) 1 . S Qia(N, 8 bpyiv,d) S @i(N, 8 byyd) S o S
po(N,a, b,,d) < @(N,a,b,,d), where N is an arbitrary model of T with (AU B U
D) € N. Let b,, enumerate B,,, we have defined the desired complete type over (A U
B UD).
m|
Theorem 5.2.3 [63, P. 724] Let T be a countable complete theory of (an
expansion of) linear order. If there exists a finite subset A of a model 9t = T and
exists a type p(x) € S;(A) which is non-principal and extremely trivial, then the
theory T has 2% countable models up to an isomorphism.

Proof of Theorem 5.2.3 Since every theory which is not small has 2% countable
non-isomorphic models, it remains to prove the case, when the theory T is small.

Denote by 9t an R,-saturated elementary extension of 9.

During the proof, we will construct a countable model Mt, < 9t for every infinite
sequence of zeros and ones, 7: = (t(1),7(2),...,T(i),... )i<w, T(1) € {0,1}, such that
forevery t; =1,, M, = M,,.

Let us fix such a sequence of zeros and ones, t.

Denote by Q, the following subset of rational numbers:

1 2 1 2 3
QT.—nLZJO(Zn,Zn+1)UnZL1J’ {2n—§,2n—§}UnZL1J' {Zn—E,Zn—E,Zn—E}.
T(n)=0 t(n)=1

Now, pick from the set p(N) asubset, ordered by the type of Q.. If such a subset
does not exist, then by Lemma 5.2.1 T has 2% countable models, and the theorem is
proved. Denote this subset by B:= {b,b,,...,b;,...}ics- Also, for each n < w let
b,, be the tuple (b, b,,..., b, ). For the model 9. we will have p(M,) = B.

Using the Tarski-Vaught test we will show that the set M, is a universe of some
elementary substructure of 9t. On each step of the construction we will be fixing a set
of parameters and promising to realize each satisfiable 1-formula over it. We must keep
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coming back to the same set of parameters and deal with another formula. So the
different sets of parameters are being attacked in parallel. We will choose the
realizations in a certain way, which, together with extreme triviality of the type p, will
imply that the only realizations of this type will be the elements of the set B.

Step 1. Let us denote by &, the set of all A-definable 1-formulas, ®;:=
{pi(x,@)|i < w}, where a is a tuple enumerating the set A. Choose the least i such
that 9t = 3xe;(x,a). To satisfy the Tarski-Vaught property, we must find a witness
for ¢} (x,a). Since the sets A, B and the formula ¢; are as in Lemma5.2.2 (consider
the set D to be empty), there exists an A U B-type ! satisfying conditions 1) and 2)

from the lemma. And since the model 9t is X;-saturated, this type is realized in 9t by
some element, denote it by d,. Therefore the element d; is principal over the set A.
Step 2. Let us take smallest index j for which <p}(x, a) € &, was not taken

before and the following holds: 9 = Elxgo}(x, a). We find a special witness for
<p} (x, @), which will satisfy the Tarski-Vaught condition but not realize p. By applying
the Lemma 5.2.2 to the sets A, B and {d;}, and go}(x, a), we can choose d,, a
realization of qpi- The element d, can be chosen to be principal over the set Ab,d;.

Now let us take the element b, and construct the set of (AU {b;}U{d,})-
definable unary formulas, which we denote by ®,: = {@Z(x,a, b;,d,)|i < w}. Now
choose the least index i for which ¢?(x,a, b,,d;) from the family @, was not
chosen before, and 9 = 3x@?(x, a, by, d;), and find a realization d; existing by the
Lemma 5.2.2 applied to the sets A, B, {d,,d,}, and the formula ¢}.

At the stage k the next sets would be chosen:

— Nested sets D; ={d,}, D, ={d,,d,,ds}, D3 ={dy,dy,...,d¢}, ..., Dy =
{dy,d,,...,dw+nk}, Where D; was constructed on step i through addingto D;_; of i

2

new realizations. For some i and j we might have d; =d;, where 1 <i<j <
(k+1)k
—

— The family of all A-definable 1-formulas @, and forevery m, 2<m <k,a

family of (4 U {b,,_} U D,,_,)-definable 1-formulas, ®,,

Further we will use the usual notation d; = (d,,d,, ..., d;), i < w.

Step k + 1. Firstly, we realize one formula from each of the families we defined
earlier. To do this, for each m, 1 <m <k, find smallest number i,, for which
formula ;" € ®,, were not taken previously, and the definable set in9t of which is

not empty. Apply Lemma 5.2.2 to the sets A4, B and {c?(kﬂ)km_l}, and the formula
2

@, to find realization d(k+1)k of the type qpm

Now let &, ., be the set of all (AU {b,} U D,)-definable 1-formulas, find the

smallest index i such that 9t = 3x@f*1(x, a, by, d(k+2)(k+1)) And choose d(k+1)k+k+1

as before, as a realization of a type qpk+1s which exists by Lemma522applled to the
sets A, B, {dusr, } and formula @F** . Let D,,, be the set
2
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{dy,d,,.. d(k+1)k }. We can arrange that each new d; is principal over Ab, and

the d;’s for j <l
Denote M,:=AUBU U D;.

i<w

Suppose that there exists a realization & € p(N)\B. Since the type p is not
principal, § £ A, then for some k < w, § = d;. For every n < w the type tp(d;/
ab,) is non-principal. Otherwise, it should be realized in Mt(a, b,)) by some element
not from b,,, which is impossible since the type p is extremely trivial. Also, since for
every i < w,we choose d; to satisfy the conditions of Lemma 5.2.2, we have that the
type tp(d;/a,b,,d;_,) is principal. From the last statement it easily follows by
induction that the type tp(d./ab,) is principal, and therefore tp(d,/ab,) is a
principal type as well. This is a contradiction, and we have p(9t,) = B

The obtained structure 9tz is an elementary substructure of the structure 9t. This
is true because of the Tarski-Vaught test. And have that I(T U tp(a), w) = 2% since
the number of different sequences t is equal to the cardinality of the continuum. The
theory T, being small, has at most countably many distinct complete extensions by
realizing an n-type, T U tp(a); consequently, I(T,w) = 2%,

—+k+1

O

By this we have proved the main theorem of the section, which guarantees that a

countable theory which has an extremely trivial 1-type over a finite subset, has the
maximal number of countable models up to an isomorphism.
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6 MAXIMALITY OF NUMBER OF COUNTABLE MODELS FOR
PARTIALLY ORDERED THEORIES

Consider atheory T be countable and complete, and let ¢ to be some element of
some structure of T.

We generalize the usual concept of a partial order onto a definable order on tuples
of elements.

Definition 6.1 [69] We call a formula ¥ (x,y,¢) with In(x) = In(y) to be
defining a partial order in a theory T, if for any structure 9 = T such that c € M
the following holds:

M EVVy(p(x,y,0) > x #Y);

M = Vevy-(p(x,y,¢) ANP(Y, x,0));

M = Vevyvz((Y(x,y,c) AY(y,z,0)) = PY(x,Z,C)).

Definition 6.2 [69, P. 6] Consider ¥ (x,y, ) to be a formula which determines a
partial order on T, by a y-chain on the theory T we mean a subset of some structure
I =T with M = 3Ix3y  Y(x,y,c), whichis alinearly ordered by . and is convex
(by ) in the model .

Let we have a formula ¢(x), it may have parameters, by a convex-y(x,y, ¢)-
closure of a formula ¢ we mean the next formula Qoch(f&.a ()):= 3Ty, Ay (e (Y1) A

Py) N (WOLXO)VE=y) AWK, Y1,0) VX =73))).
By convex- Y(x,y,c) -closure of a type p(x), we understand the type

Py (2.0 () = {fpfp(f,y,c—) (%) |o(x) € p}.

Theorem 6.1 [69, P. 6] Let we are given be a complete countable theory T, and
let M be a countable structure of the theory T. If there exists a tuple ¢ € M, and a
sentence Y (x,y,<), In(x) = In(y) = [, which defines partial order on the theory T
and such that for every natural n € N there is afinite discrete y-chain of length equal
to or more than n, then I(T, w) = 2.

Proof of Theorem 6.1 If the given theory T is not a small theory, then by the
theorem 2.3.2 it has the maximal number of countable structures up to an isomorphism,
and the theorem is proved. Consequently, later we can consider T to be a small theory.

Firstly note that by the theorem of compactness there exists a discrete y-chain of
an infinite length.

For simplicity let us denote the following:

X <" y:=9(x,7,0);

X<'y=x<yvVi=7y,

s(XY,0):=x <*YyA-3FZ(X < ZAZ < Y);
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SO, 5): = 37, 32,(F) = TA Ty = § A 50 7))
n_
sCW(x,y):=32,...32,(Z, =X NZ, =y Y A $(zi41,2), where n € N\{0};
p®)": =3I Ay < X);
p(X)":=3IyQG)Ax <), o _
For a given natural number we can construct a formula which will determine a
discrete chain of length which is more or equal to that number, that is: ¢,,(X,y,¢): =

n-1
3z,...3Z,(Z; =X Nz, = }7./\12_1- <" Zi AVZ(X<*ZAZ <"y - 3t 3t,(s(t,2) A
1=
$(Z,t3)))).
_Denote the type p(x,y,0):={¢,(X,y,C) | n<w}. Let us take the tuple
(a,b) Ep and consider the next formula: yo(Xx,a,b,C):=

n-1
A%1... 3%, 3Y1. . I = A A Y = bi£\1 (5%, Xip1) AS(Vir1, V1)) Ay < XA
X <* y,;) which is a formula meaning that x is located between @ and b, but it is not
an i-th <*-successor (or predecessor) of the tuple a (b) for every i < n.

Denote q(x,a,b,¢): = {y,(X,a,b,¢) | n < w},thisisnot necessary a complete
type, but a finitely consistent type over {a, b, ¢}. Take a countable saturated extension
N of the structure M(a, b, ¢), the prime over the set {a, b, c}.

For @and B realizations of g in Jtlet, V,u(B):={y €q(N) | In€eZ Nk
sM(B,7)} be the elements from realizing g in % that can be ‘reached’ from £ in s-
steps, and the same for a. Let us denote

Ve (@), Vam(B)):= {7 € q(N) | Vou(@) <y <Vyu(B)}-
And denote a:= (a,b, ).
Lemma 6.1 [69, P. 7] For every y;,¥7, € (Vym(a), Vp,m(E)) =q(N) ,
tps-(711{@, b, €3}) = tp%. (721{@, b, }).

Proof of Lemma 6.1

Towards a contradiction let there are 7,7, € (V,0(a@), Vyn(b)), and an a-
definable sentence H for which y; € H(N,ad) <* y,. To have a convex set let us
replace H by (H(N,a)*)~ if necessary.

Given k,n,,n, < w for which n, + n, < k consider

Sknyn, (H)(X,8):= (X <" yA=sK(x%,7) > 32,325,(X <2, <" 2, <" A
_ISnl(f, Z_l) /\ _ISnZ(Z_2, )_/) /\ H(Z_l, .f, }_/, C_') /\ _IH(Z_2, .f, }_/, C_') /\ S(Z_l, Z_z, &)))

By the theorem of compactness, we can prove the following:

Claim 6.1 [69, P. 8] There are 2 non-decreasing functions s;,s,: w = w which
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are Qot constant, and for which there exists m < w, such that for all k > m, and all
a', B' € (@, b)), the following holds: It & S s, (k5,00 (H) (@', B).

Take  Hy(x,@):= —H(x,a) A3y(s(¥,x) AH(F,@). Then  Hy(N,a) N
q(N) =@ and Hy(N,a) N q(N) = {yp} for an element yy € (V,5(@), Vyn(b)) -
Then take

C) A Hy(Z, 4));

Go(x,d):=3z(H(X,a,z,
Z,b,0) A Hy(Z, @)).

G, (%, d): = A7(H (%,

The sets are located in the following way: Go(N,ad) < V,%(¥7g), Vpa(@) <
Go(N,@)* and V, (V) < Gy(N,@)*, G1(N, @) < V,5(b). We will also use the next
notations:

Hy(x):= =Go(%,a@) ATy (Go(y, ) As(Y, X)),
Hy (%): = =G, (x,a) Ay (G, (¥, @) A s(P, X)),

Goo (%, @): = AZ(H(%,@,Z,0) A Hy(Z, @)):
Goy (X, )1 = 32y, 2, (H(X, Z1, 2, C) N Hy(Z1, @) N Hy(Z,, @));
G1o(¥,0): = 321, 2;(H(X, 21, 2,) A Hy (21, @) A H1(Z,, 4));
G,,(%,@): = 3Z(H(%, 7, b, ©) A H, (Z, @)).

By using this construction w times we get a countable number of a-definable
formulas, Hg, § € 2<%, with the property that for every sequence 7 € 2%, t(n) €
{0,1} there exists an n-type q, € S, ({a}), extending the next set of a-definable n-
formulas: T (x):={x <H;,(N,@) | t(n+1)=0}U{H, ,(x,@) | t(n+1) =
13}.

What is a contradiction to us assuming that the theory T is a small theory.

O Lemma 6.1

Lemma 6.1 can be used to imply the following.

Lemma 6.2 [69, P. 8] For all §,:=(8;,...,8,), §; € (Vo0(@),Vym(b)), 1 <
i<n; with V() <Vyn(6iy1) (1<i<(n—-1)), and y € N such that
tp(y|{ab,c} U &,) is isolated we have that: V1,7, € (Vy,a (8:), Vpu(8i41)),

tp°(y1|AU S, U7 U{8,a}) = tp°(y,]lAU S, UT U8, a}).

Take ' to be an \;-saturated extension of I U {a}.

Having an arbitrary sequence t: = (t(1),7(2),...,7(i),... )<, of 0’s and 1’s,
we will apply the a similar construction to the one given in [62, P. 46] to obtain a
countable substructure M, < N, such that for every different sequences 7, = 7,,
M, = M, . Letus fix such a sequence 7 until the end of the proof.
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_ Take B ={e | reQieN}U{f} | ieN,n€{0,1}, and (i) =0}uU
{fi | i€Nne{0L2}and () =1} S q(N) with Vyg(e},) < Vom(&r,) <
Voo (fn) < Vaou(f,) < qu,(e";“z, where i€EN, <, €Q, T€Q, n,<n, €
{0,1,2}. The set B;:= B’ U V,q,(b) is countable, so we can enumerate it, B, =

beB/

{b; | i <w}. We will use the notation b,:= (by,b,,...,b,), n < w. For the
constructed model 9t it will hold that q(9t,) = B;.

Construction of the model k.

Step 1. By A; we will consider the set of all a-definable formulas with one free
variable, A;:= {Y}(x, @) | i < w}. Take P} (x, &) € A; with the least i for which
N’ &= Axp](x,@). In respect that T is a small theory, there is an isolated over a
formula ¥}, (x,@) S ¥{(x, @) (that is, a subformula), which as well has an isolated
subformula over the set {@, b;}. If we repeat this construction, we will get a finitely
satisfiable infinite decreasing sequence of nested formulas wil,j(x, a, Ej) which are
isolated over parameters: ...C Y, (N, @ bny1) € Y1, (N, @, by,) ... €PN, a).
Let us denote by d; realization of the constructed chain. Such a realization exists
because the structure 9’ is \,-saturated.

Step 2. Let us take a new formula 1} (x, @) € A; with the least index i and for
which there is a witness in %', ' E 3Ixy;(x,a), and find a realization d,
analogically, as the realization d;.

Now let us take b, and construct the set of (a U {d,} U {b;})-definable one-
formulas A,:= {?(x,d,d;, by)|i < w}. Find the formula ¥?(x,d,dq,b,) € A,
which has not been taken previously and has the least index satisfying 9’ E
Ax?(x,d, by, d,), and find d; (which exists because 9t' is &, -saturated) of the next
infinite chain of isolated over parameters nested formulas wﬁj(x, a, dl,Ej): .. €
lpi2,n+1(x' a,d,, Bn+1) < ‘piZ:n(x; a, dlrEn) c.c wlz(x' a,dq, by).

At the end of stage k we will have the next sets: for each m, 1 < m < k, the
sets Dy:={d;,dy,...,dm+nym} (We can have d; = d; for some indexes i and j

2
with 1 <i<j< (m+21)m), the set of G-definable one-formulas A, and for each m,

2<m<k, the sets A,, of one-formulas definable over the set ({G}uU D,,_; U
bn-1)-

Step k + 1. For every m, 1 <m < k, take a formula ;" € A, of a smallest
index, which was not considered before, and the set of realizations of which in 9t is
not empty. And choose d@m realizing descending chains of isolated sub-formulas

of formulas ;" . By Ay, denote the set of all one-formulas which are definable over

({a}u D, Uby). Next let us chose dgernre, . analogically to the previous
2

construction. Denote by D, the set {dl,dz,...,d(k+1)k+k+1}. And denote M,:=
2
{ayu B, U U D;.
i<w _
By the statement of the theorem, for given an arbitrary § € g(N')\B and any
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tuple b,, we have that the type tp(8/d,b,) is non-principal. By the way we have
chosen d;:= (dq,d,,...,d;)i<,, the type tp(d;/d, b, d;_,) is principal, and tp(d;/
a, b,,) isas well. Consequently, Lemma 6.2 proves that the type tp(8/d, b,,, d;) is not
principal, and therefore, that & is not realized in Mt..

The Tarski-Vaught test shows that the structure 9t, that we have obtained is an
elementary substructure of the considered structure Jt’.

Let us prove that for every two nonequal sequences of 0’s and q’s 7, and t, the
structures M, and M., are not isomorphic. To obtain a contradiction let us consider

u
that M, =M, . Now take the least index i for which 7,(i) # 7,(i) . For
convenience we suppose that i = 1 and let 0 = 7, (1) # 7,(1) = 1. We will use the
above mentioned construction of B, and B'.. If we are having an isomorphism, the set
of realizations of a type is mapped into the set of realizations of the same type. Also in
respect that the function u is an isomorphism, for all realizations ¢, ¢; € q(M;,), we
have that M, F (¢, C,) implies M, E P(u(cy), u(cz)); ¢ £ Vam,, (¢,) implies
u(c) € Vgm, (u(cz)) ; and from ¢ € Vo, (C2) it follows that u(c,) €
Vam,, (u(cz)). That is the Vqm,, -neighborhoods are connected to Vg -

neighborhoods. ~Moreover, if there exist no ¢; € q(M; ) such that
Vam,, (u(cy)) < o3 <* Vam,, (u(c3)), meaning that the Vq,mrl-neighborhoods of ¢;
and ¢, are ordered in a discrete way by means of <*, then neighborhoods of u(c;)
and u(c,) need to be discretely ordered by means of <* as well. The same is also true
for neighborhoods that are ordered in a dense way. Consequently ,Ll(Vq'gm_rl () =

Vo, 29)) H(Vom,, (fH) = Ve, () (having that fi' and £} are located in
two first neighborhoods ordered discretely). It is a contradiction since
‘Ll_l(Vq’gm_L_z (f)) has to be in the dense interval of neighborhoods.

The number of different infinite sequences of 0’s and 1°’s is equal to 2, I(T U
p(d), w) = 2*. Any structure of T gives maximally w models of the theory T U
tp(a), and consequently, I(T, w) = 2.

0O Theorem 6.2

As an easy corollary the following holds:

Corollary 6.1 Let we have a countable small theory T with I(T,w) < 2. If
there exists such a formula ¥ (x, ¥, ¢) which determines a partial order which has a
y-chain of an infinite length, then this chain is dense.

Theorem 6.1 is very powerful in studying the number of countable models. The

main theorem of the next chapter can be obtained through using the construction in the
proof of the Theorem 6.1.
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7 MAXIMALITY OF NUMBER OF COUNTABLE MODELS FOR

LINEARLY ORDERED THEORIES

Further by 9t we will be considering a countable saturated model of a theory T

which is small. We will study linearly ordered theories and suppose that < is an
@ —definable linear order relation.

sets.

The formulas of the first order will be often written by the relations in definable
For instance:

x < @(N)=Vy(p(y) - x <y),

X € (B1,B2) = P1 < x <Py

e(N)NO(N) # @ =N E Ax(p(x) AO(x));

e(N) <O(N)" =N EVt(Vy(0(y) -y <t) = Vx(p(x) » x < 1)).
For a subset A € N (which is not necessary definable) we denote:

At:={y e N|Va€ A:N Ea <y}
A":={y eN|Va€e A:N ey < a}.

Let AL B < N.Then Ac B means A< B and A # B.
The following is a well-known definition:

Definition 7.1 Let A < B. The set A is called to be convex in the set B, if
Vx,yEA(x <y),VZEB(x<z<y—-zE€A).

If A isconvexin N (thatis, it is convex in the universe of the structure), we say

that 4 is convex.

For a formula ¢(x,a) aconvex closure of ¢ is the following formula ¢°:
P (x,a):= 3y, Ay (@1, D A P(Y2, D) A (V1 S x S y3)).
Fora 1-type p € S;(A) aconvex closure of p is atype p€, such that
p¢ = {o°(x,@)|¢(x,a) € p} [65,P. 6].

Definition 7.2 [65, P. 6] Let A and B be subsets of N, ¢(x,y) be an A-

definable 2-formula. The formula ¢(x,y) is called B-stable, if for every element
a € B there are y;,y, €B, y; < a <y, such that y; < ¢(a,N) < y,, and such
that ¢(a, N) N B # Q.

If B=0(N) and O is an A-definable 1-formula, or B = p(N) and p € S;(4)

IS one-type then we say that ¢(x,y) is @- stable or p- stable.
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Definition 7.3 [65, P. 6] A B-stable two-formula ¢(x,y) is convex to the right
on B, if

Va € BVEB(LE€Ep(a,N) >a<[LAVyEB(a<y<pB-v€p(aN)).

If © isan A-definable 1-formula, or p € S;(A) is a 1-type such that B = O(N)
or B = p(N), then we say that the formula ¢(x,y) is convex to the right on ©(x) or

on p(x).

Definition 7.4 [65, P. 7] We say that a B-stable 2-formula ¢(x,y) is convex to
the left on the set B, if

Va € BVB(LE€Ep(a,N)» L <a)AVyEBPB <y<a-yE€qyp(aN)).

If © isan A-definable 1-formula, or p € S;(A) is a 1-type such that B = O(N)
or B = p(N), then we say that the formula ¢(x,y) is convex to the left on ©(x) or
on p(x).

The definitions of a convex to the right, convex to the left, and B-stable formulas
generalize the notions for weakly o-minimal theories, which were defined in [66] and
[67], and introduced in [68]. The other generalization of p-stability were represented
in [52, P. 161]. In this work instead of the notion “p-stable” the notion “p-preserving”
IS used.

Definition 7.5 [65, P. 7] 1) A convex to the right 2-formula ¢(x,y) increases
on B,if Va,B €B, (a <B - @B, N)* < p(a,N)™").

2) A convex to the left 2-formula ¢(x,y) decreases on B, if Va, € B, (a <
B = @(a,N)” € ¢(B,N)7).

We are interested in the case when 8 € ¢(a, N).

Definition 7.6 [65, P. 7] An A-definable increasing on B (decreasing on B) 2-
formula ¢@(x,y) is a quasi-successor on B, if Ve € B, 3f € ¢(a, N)NB, BN

((p(ﬁ’ N)\(p(a' N)) = Q.

As in the previous definitions, If ©(x) is an A-definable 1-formula, or p €
S1(A4) is a 1-type such that B = O(N) or B = p(N), then we say that the formula
@(x,y) Is aquasi-successor on O(x) or on p(x).

If @(x,y) isaquasi-successor formula, we denote:

P°(x,y):={x =y}
O™ (%,y):= 3y, e, WY1 (@ Y1) A QYL Y2) A e AQ(Vn=1,Y));
@7 (x,y):= 3%y, o, X1 (@ (X1, X) AP(X2, X)) N e AQ(Y, Xp—q) A
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Ay < x) AL X < X).

@™ (x,y) is also a quasi-successor on B.
Let ¢(x,y) beaquasi-successoron B.For a € B we consider a neighbourhood
the formula ¢ defines by acting on «:

Vpo(@):={y €B | In€ Ly € ¢"(a,N) N B}.

The proof of the following theorem can be obtained as a modification of the
presented proof of Theorem 6.1.

Theorem 7.1 [65, P. 8] Let we are given a countable complete theory T be of (an
expansion of) a linear order. Let A be a finite subset of N, p be a 1-type over the set
A, ¢(x,y) be an A-definable quasi-successor on p(x). Then the theory T has 2%
countable models up to an isomorphism.

Proof of Theorem 7.1 If the theory T is not small, then by the Theorem 2.3.2 it
has the maximal number of countable models up to an isomorphism, and then the
theorem is proved. Therefore further we will can consider the theory T to be small.

Without loss of generality we can assume that the formula ¢(x, y) is convex to
the right on the type p(x).

Denote by q(x,y) the followng 2-type: {x<y}Up(x)Up(y)U
fygo*(x,N) | n<w}VU {R(y,x) | R(x,y) is an A-definable convex to the
right on p 2-formula with the condition: Vn < w,Va € p(N), ¢™(a,N) N p(N) C
R(a,N)} U {L(x,y)|L(x,y) isan A-definable convex to the leftton p 2-formula with
the condition: YV/n<w , 3Ia;,a, € p(N),a; < ™ (ay, N),a; € L(ay,N)} . The
consistence of q(x,y) is verified directly.

Let the tuple < a, 8 > realizes q(x,y). Then fix this tuple until the end of the
proof of the Theorem 7.1. Denote

(V.0 (@), V0 (B))py: = (¥ € p(N) V(@) <y <V (B}

Lemma 7.1 [65, P. 8] Vyy1,v2 € (Vpp,(a), V0 (B))p(vy:

tp°(y11A U {a, B}) = tp(y2|A U {a, B}).

Proof of Lemma 7.1 Let that the conclusion of Lemma is not true, that is there
are y1,v2 € (Vo (@), V0 (B))pvy, there exists (A U {a, f})-definable formula with
y: € H(N,a,B) < y,. We can think of H(N, a, ) as being convex. If not we can take
an (A U {a, B})-definable formula which defines the set (H(Na, 8)*)".

By the theorem of compactness, we have the following:
(*) there exists an A-definable formula ©(x) of the type p such that for every
elements o', € O(N), &' < ', Vo,(a") <Vo,(B") implies there arey,,y, €

45



(VG),(p ((Z’), V@,(p(ﬁ,))O(N)! with V1 € H(Nr 0(’, ﬁ,) <72 and Y2 € (p()/bN)

For k,n,,n, < w such that n, + n, < k let us have the following notation:
Sknn, ), y):=(x<yAy £ O (x,N)) > 3z,32,(x < 2, < 2, <Y A
z, 2" (x,N)ANy € p"2(z,,N)ANz; E H(N,x,y) NAH(N,x,y) <z, ANz, €
®(z1,N)).

Claim 7.1 [65, P. 9] There are non-decreasing non-constant functions s;, s,: w —
w for which there exists m < w suchthat Yk > m,va', " € (a, ), We have that

N & Sys. (0),s,00 (H) (', B").

Proof of Claim 7.1 In case opposite, by theorem of compactness, we obtain the
contradiction with the definition of H(x,y, a, B).
O
Denote Hy(x,a,B):= =H(x,a, ) AIy(p(y,x) AH(y,a,)). The Lemma 7.1
implies that Hy(N,a, ) N p(N) =@ and Hy(N,a, ) N p(N) C V, ,(yg) for some
element yg € (V.4 (a), Vo0 (B))pw)-
Now denote

Go(x,a,B):=3z(H(x,a,z) NHy(z, a, B)),
Gi(x,a,):=3z(H(x,z,p) NHy(z,a, B)).

So, by (x) we have that Go(N,a, B) <V, (¥g), Vpo(a@) < Gy(N,a, B)* and

Voo (Y0) < Gi(N, @, B), G1(N, , B) < Vp,,(B).
Denote

Ho(x):= =Go(x, @, ) A3y(Go(y, @, ) A p(y, X)),
Hy(x):= =61 (x, @, ) A3y (G1(y, &, B) A @ (¥, %))

Then by the Lemma 7.1 we have Hy(N,a,f) Np(N) =@ and Hy(N,a,B) N
P(N) €V (ro) for some vy € (Vo (@), %o (Yo)pwy - And  Hy(N,@,B) N
p(N) =0 and Hi{(N,a,B) N p(N) €V, ,(¥1) for some Y1 €

(Vp,qo (V(Z))J Vp,go (ﬁ))p(N)-
Thus we have a < Hy(N) < Hy(N) < H{(N) < B, and

Vp,(p (a) < Vp,(p (VO) < Vp,(p (V(Z)) < Vp,(p (Vl) < Vp,(p (.8)’
Hy(N) €V, (Y0), Ho(N) €V, ,(vg), HL(N) €V, ,, (V1)

Then denote

Goo(x,a,8):=3z(H(x,a,z) NHy(z,a, )),
GOl(x' a, ﬁ) = ElZlJZZ(H(x' erZZ) A HO(Zl' a, ﬁ) A H(Z)(ZZJ a, B))’
Gio(x, @, B): = 32y,2,(H(x, 21, 22) N Hp(z1, @, B) A Hi (2,2, B)),
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Gi1(x,a,B):=3z(H(x,z,f) NHi(z,a, B)).

SO, we have Goo(N, Q, ﬁ) < Vp,(p(]/O)’ Vp,(p(a) < Goo(N, a, ,8)+ and Vp,(p()/O) <

Go1(N,a, B)*,Go1 (N, @, B) < Vp,(p(]/(z))» Gio(N,a, B) < Vp,q)(Yl): Vp,(p()’(b) <
GIO(N' a’;ﬁ)+; and Vp,(p(y(b) < Gll(N' a»ﬁ)-l-'Gll(N» O.’,,B) < Vp,(p(:B)

Then by the Lemma 7.1 we have the following: Hyo(N,a, ) N p(N) = @ and
Hoo(N,a,B) N p(N) €V, ,(Yoo) for some yoo € (V0 (@), V0 (¥o)) —(N) .
Also Hyy(N,a, ) Np(N) =@ and Hy;(N,a,B) Np(N) €V, ,(ye1) for some
Yo1 € (Voo (V0D Voo (Vo)) pvy - And Hyg(N, @, B) Np(N) =@ and Hyo(N,a,B) N
pP(N) € V4 (v10) for some y19 € (13,6 (¥0), Voo (1))pvy Hia(N, @, B) N p(N) = @

and Hy;(N,a,B) N p(N) €V, ,(v11) forsome yiq € (V0 (V1)) Yy (B)) p(vy-

By applying this method w times, we get a countable family of A-definable
formulas Hg, § € 2<“ such that for every 7 € 2%, 7(n) € {0,1} there is p, € S;(4),
one-type over A which extends the following set of A-definable 1-formulas:

(x):={x < Hr(l),...,‘r(n) (N,a,B)[t(n+1) =0} U
{Hz1y,..ccnn (6 @, B)|t(n+ 1) = 1}

This contradicts with the assumption that the theory T is small.
Using the proof of Lemma 7.1 we can get the following:

Lemma 7.2 [65, P. 10] For each ay,...,an € (V4 (@), V5o (B))pmv) (@n:=<
Aq, ey Ay >) With V, (@) <V, p(ai4q1) (1 <i<(n-—1)), for each y € N with
tp(Y|[AVU a, U{a,f}) Dbeing isolated the following holds: Vy;,y, €
Vo0, (@), Vo (@i41)),

tp*(n1lAV a, Uy U{a,B}) =tp“(y.|[AVa, Uy U {a,p}).

It follows from the Lemma 7.2 that any element y € (1}, , (@), Vp » (@;i11)) has

non-isolated one-type over AU @, U B U {a, B} because it is irrational.

Let 2<¢ be a set of all finite tuples of elements from {0,1}. Then for every n €
2<%, n:=<n(1),n(2),..,n(n) > denote I(n):=n. Let n =m € 2<%, then we say
that n less than ©# (m<m) if either ncrAr((n)+1)=1 or 3i<
min{l(n), l(m)}, Vj <i,n() =n() An() =0An() = 1.

Let < ay,ay, ..., Ay, ...  >pce DE an w-sequence of elements from the set of
realizations p(N), such that V, , (@) <V, ,(@;) <V, o(@ir1) <Vpo(B) (1<i<
).

Then for every 7 € 2“ we will construct, by using the Lemma 7.2, a countable
structure M, < N such that for every n < w, a,, € M, we have that t1(n) =0 < in
the set M there is no element from (V}, ,(a2n), V) o (2n41))pvy @aNd T(n) = 1 ©
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for every n € 2=, there exists an element a,, , € (V}, ,, (@20), Vo (@2n+1))pvy N My,
such that for every two distinct n=m €2~ if n<m then V,,(a,,) <

Vp,(p(p(an,n)-

Construction of the model M.

Let 7 € 2¢. We will construct M, as a union of an increasing chain of finite sets

M; = Um<w BmBm-1 € Ay © By, such that [By|, |An| <@ [Bp\Am| =
m?; tp(B,,\Am|4,,) is isolated and for each i < m we have some fix enumeration
of F;(B;), where F;(B;) is the set of all B;-definable 1-formulas.

Step 0.

Denote By: = A. Fix some enumeration of F; (B,).

Step m + 1. By the Lemma 7.2 and by using approach in the choice of y,, in the
proof of the Lemma 7.1 we can obtain

Api1:= B U{ajnln € 25, I(n) <m+1, (i) = 1}.

Forevery k <m+ 1 denote B 1 x:= Ams1 YU {Bmsrrlk’ < k}.

Define B41k- Let Ok j(x) be 1-formula from F; (By) such that ©,,.4x(N) N
Bm+1x = @ and j is minimal with this property. Then take G(x) an arbitrary atom
from F; (B +1x) (that is for every K(x) € F;(Bp41x) if G(N) N K(N) = @ then
G(N) € K(N) ) with G(N) € 0, ;(N) and arbitrary element from £,,,;, € G(N).
The existence of ¢ (x) follows from our assuming that T is small and because B, 1k
is finite.

Then put Bp,41: = Uk<m+1 Bm+1k and fix some enumeration of Fy (B,;41).

Let us to verify that M, is model. Consider an arbitrary M_-definable 1-formula
Y(x,y),y € M, such that N £ 3xW(x,y). Then there exists k < w such that y n
(Bx\Bk-1) = @. Thus for some m < w,k <m we have N & ¥(f,,x, V), € M;.
What means that M, < N.

It is clear that if 7=17"€2®, then in language L:=LUAU{a, B},
M; =« M7,.

Every countable structure of the theory T has no more than w nonisomorphic
models in the extended language L*. Therefore the original theory T has 2¢
countable non-isomorphic models.

|

This finishes the proof of the main result of this section. By the theorem we obtain
that if there exists such a formula quasi-successor, then the countable spectrum of a
small theory is maximal.

48



8 VAUGHT'S CONJECTURE FOR WEAKLY O-MINIMAL THEORIES
OF CONVEXITY RANK 1

Let us denote by £ a countable first order language. In this section we will
consider £-models and suppose that the language £ contains a symbol < which is
interpreted as a binary relation of a linear order in these models. An open interval in
a model Mt is a definable with parameters subset of M which is of the form [ = {c €
M:M E a <c<b} forsome a,b € MU {—o0,0} with a < b. In a similar way, we
can define closed, half open—half closed, etc., intervals in 9t. An arbitrary element
a € M can be represented as the following interval: [a,a]. By an interval in the
model 9t we will ambiguously mean, any of the above mentioned interval types in
It. Recall that a subset A of the universum M is called convex if for each elements
a,beAand ceM a < c < b implies c € A.

This section studies the concept of a weak o-minimality which was firstly
investigated by D. Macpherson, D. Marker, and Ch. Steinhorn in their article [70]. By
a weakly o-minimal model, or a weakly ordered-minimal structure we understand
a model M =(M,=,<,...) which has a linear order relation such that any
parametrically definable subset of 9t can be represented in form of a union of a finite
number of convex sets in Mt. Let us recall that a model Mt is called o-minimal
(ordered-minimal) if every its definable subset can be represented as a union of a
finite number of intervals and points in 9Jt. Thus, weak o-minimality is a generalization
of the concept of o-minimality.

Let A and B Dbe arbitrary subsets of a linearly ordered model M. Then the
expression A < B means that a < b whenever a € A and b € B. The expression
A < b (b < A respectively) means that A < {b} ({b} < A). By A* (A™) we denote
the set of elements b € M satisfying the condition A < b (b < A). For an arbitrary
type p by p(M) we denote the set of all elements which realize the type p in model
M. Given an n-tuple b = (by, by, ...,b,) by b; we denote the following tuple:
(b, by, ....,b;) forany 1 <i<n-—1.

Given a function f on M by Dom(f) we denote the domain of f, and by
Range(f) we denote its range.

A theory T is said to be binary if every its formula is equivalent to a Boolean
combination of formulas with no more than 2 free variablesin T.

In the following definitions we consider M to be a weakly ordered-minimal
model, A,B € M, M to be |A|*-saturated, and the types p and q € S;(A) to be
non-algebraic 1-types.

Let us recall the following definition.

Definition 8.1 [45, P. 230] A type p said to be not weakly orthogonal to a type
q (p £ q) if there is an A-definable formula H(x,y), a € p(M), and realizations
by, b, from q(M) for which that b, € H(M,a) and b, € H(M, a).

In other words, p is weakly orthogonal to g (p LY q) If p(x) U q(y) has a
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unique extension to a complete 2-type over A.

Lemma 8.1 ([71], Corollary 34 (iii)) The non-weak orthogonality relation is a
relation of equivalence on the set of all one-types S;(A4).

Definition 8.2 [72] We say that a type p is quite orthogonal to the type g
(p L9 q) if there is no A—definable bijection f:p(M) — q(M). A quite o-minimal
theory is a weakly o-minimal theory for which the notions of quite ad weak
orthogonality coincide for 1-types over arbitrary sets of structures of the given theory.

It is obvious every ordered-minimal theory is a quite o-minimal theory.

Definition 8.3 [73] Let we are given T to be a weakly ordered-minimal theory,
let MWt be a sufficiently saturated structure of the theory T, and let the one-formula
@(x) bearbitrary and M—definable. To define the convexity rank of the given formula
@(x) (RC(ep(x))) we use the following inductive construction:

1) RC(p(x)) =1 if (M) is infinite.

2) RC(p(x)) = a+ 1 if there exist a parametrically definable equivalence
relation E(x,y) and an infinite sequence of elements b;,i € w, such that:

—Forevery i,j € w whenever i # j holds that M = =E(b;, b;); and
— For every i € w RC(E(x,b;)) = a and the set E(M, b;) is a convex
subset of ¢ (M).
3) RC(p(x)) = u if RC(p(x)) = a forany a < u (u is limit).

If for some element a RC(¢@(x)) = a then we say that the rank RC(¢(x)) is
defined. Otherwise (that is if RC(¢(x)) = a forany a) we say RC(@(x)) = oo.

In a particular case, a theory has the convexity rank 1 if there are no equivalence
relations definable parametrically, which has an infinite number of infinite convex
classes. It is obvious that any ordered-minimal theory has convexity rank 1.

To give definition of the convexity rank of a one-type p let us consider the
following infimum:

RC(p): = inf{RC(p(x)) | @(x) € p}.

We say that T has exactly x (less than k) countable models if it has x (less
than ) countable non-isomorphic structures.

As it is known, in [10, P. 146] was solved the Vaught’s conjecture for ordered-
minimal theories. Recently in [11, P. 129] the Vaught’s conjecture for quite o-minimal
theories was solved. From the above works it follows that these theories have the same
spectrum, namely such a theory has either continuum of countable structures, or exactly
6!3™ countable structures for non-negative integers [ and m.

In the article [57, P. 1] B.S. Baizhanov and A. Alibek have constructed for any
ordinal k with 4 < k < w gave examples of weakly o-minimal theories which have

50



exactly k countable structures up to an isomorphism. All these examples have the
convexity rank 1. The aim of this section is to investigate the Vaught’s conjecture for
weakly ordered-minimal theories of convexity rank 1, namely, to describe the
countable spectrum of these theories (which already differs from the countable
spectrum of ordered-minimal theories):

Theorem 8.1 [74] Given a weakly o-minimal theory T of a countable signature
which has a convexity rank 1. Exactly one of the following possibilities holds:

1) T is countably categorical

2) T is Ehrenfeucht, namely T has k countable structures, where 3 <k < w

3) T has w countable structures

4) T has 2% countable structures.

In subsection 2 we will show that there are no so-called p-preserving convex to
the right (left) sentences, whose sets of solutions are properly contained in the
realization set of a non-algebraic 1-type over an empty set, in a weakly ordered-
minimal theory of convexity rank 1 having less than 2% countable structures (Lemma
8.1.3). As a corollary we get that every non-algebraic type p € S; (@) should be simple
and binary.

In subsection 3 will be proved orthogonality of a family of non-algebraic 1-types
over the empty set which are pairwise weakly orthogonal (Theorem 8.2.1). In
subsection 4 binarity of weakly ordered-minimal theories of the rank of convexity 1
which have less than 2“ countable structures will be showed (Theorem 8.3.1). In
Section 5 sets of realizations of non-principal 1-types are investigated (Proposition
8.4.2) and the proof of the main result (Theorem 8.1), that is the solution of Vaught’s
conjecture for weakly o-minimal theories of convexity rank 1 will be given.

Further in this section we will assume that there exists a large saturated structure
which is said to be a monster model, for a given complete weakly ordered-minimal
theory T. We will be assuming that every structure under consideration (and
particularly, every countable structure of the theory T) is an elementary substructure
of the so-called monster model, and that each set is a subset of the universum of the
monster model.

Finally, let us note that if T is a weakly ordered-minimal theory of a signature L
and A is a finite set, then T(A):=T U {p(a)|p(x) is an L-formula, a € A, M =
p(a) for some M =T with A € M}, a theory generated from T by adding to the
language L constants for all the elements of the set A is weakly ordered-minimal.
Also, if the theory T has less than 2% countable models, then the new theory T (4)
has less than 2 countable models as well. These observations allow us to generalize
the results about one-types in S; (@) to analogical results on types in S;(A), for A an
arbitrary finite set.

8.1 Behaviour of 2-formulas and binarity of 1-type

For continuity of narration let us recall the following definitions.
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Definition 8.1.1 [65, P. 7; 75] Let 9t be a linearly ordered structure, let A € M,
M be |A|*-saturated, and p € S;(A) be non-algebraic.

1) An A-definable two-formula F(x,y) is called p-preserving (p-stable) if
there are such elements a, A,, 4, € p(M) that p(M) N [F(M, a)\{a}] # @ and
M<FM,a) <2,

2) A p-preserving two-formula F(x,y) is called convex to the right (convex to
the left) if there is a realization a € p(M) for which the set p(M) N F(M, ) is
convex, the realization « is the left (the right) endpointof F(M, a),and a € F(M, a).

Definition 8.1.2 [76] A p-preserving convex to the right (to the left) two-formula
F(x,y) is said to be an equivalence-generating formula, if for each realizations

a,f €p(M) with MEF(B,a) we have the following: M k Vx (x > [ -
(F(x,a) & F(x,,B))) (M eVx(x < B - (F(x,a) < F(x, ).

Lemma 8.1.1 [76, P. 35] Let we are given a weakly ordered-minimal structure
I, a subset A € M, and a non-algebraic type p € S;(A) over A, also let M to be
|A|*—saturated. Let F(x, y) be a p-preserving convex to the right (convex to the left)
formula which is equivalence-generating. Then

1) G(x,y):= F(y,x) is a p-preserving convex to the left (convex to the right)
formula which is also equivalence-generating.

2) E(x,y):=F(x,y)VF(y,x) is an equivalence relation partitioning p(M)
into infinitely many infinite convex classes.

Lemma 8.1.2 [76, P. 35] Let we are given a weakly ordered-minimal theory 9,
a subset A< M, let M be an |A|* —saturated structure, p € S;(4) be a non-
algebraic one-type, and F(x,y) be a p-preserving convex to the right (convex to the
left) two-formula. If F(x,y) is not an equivalence-generating formula, then there are
realizations «, B € p(M) suchthat M = F(S,a) A Ix[-F(x,a) ANF(x,[)]-

Proposition 8.1.1 [11, P. 133] Let T be a weakly ordered-minimal theory such
that I(T,w) < 2%, let M =T, A be afinite subset of M, and the one-type p € S;(4)
be non-algebraic. Then every formula which is p-preserving convex to the right (to the
left) is an equivalence-generating formula.

Proof of Proposition 8.1.1 Suppose that there is a p-preserving convex to the
right (to the left) non-equivalence-generating two-formula F(x,y), then, by the
Lemma 8.1.2 this formula is a quasi-successor on the type p. Then by Theorem 5.2.2
T has 2% countable structures, contradicting the hypotheses of the proposition.

O

Lemma 8.1.3 [74, P. 1193] Let T be a weakly ordered-minimal theory of
convexity rank 1 having less than 2“ countable structures, let It = T, A be a finite
subset of M, p € S;(A) be a non-algebraic one-type. Then there is no p-preserving
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convex to the right (left) formulas.

Proof of Lemma 8.1.3 Let us suppose, towards a contradiction, that there exists
a formula F(x,y) which is p-preserving convex to the right. If this formula is
equivalence-generating, then by Lemma 8.1.1 we can define a relation of equivalence
E(x,y):=F(x,y)V F(y,x) which partitions the realization set of p in some
structure of T into infinitely many infinite equivalence classes which contradicts that
theory T has convexity rank 1. If F(x,y) is not equivalence-generating, it contradicts
Proposition 8.1.1.

m|

Let we are given a subset A € M, let p € S;(A) be non-algebraic, n € w. A
tuple a = (a4, a,, ...,a,) € M™ issaid to be increasing if a; < a, < - < a,.

A type p(M) is called to be n-indiscernible over A if for any increasing n-
tuples a = {(a,, a,, .., a,), a’ ={a'y,d’,,...,a’,) € [p(M)]", tp(a/A) = tp(a’/
A); the set p(M) is said to be indiscernible over A if for any natural n € w p(M)
Is n-indiscernible over the set A.

Lemma 8.1.4 [11, P. 137] Let we are given a weakly o-minimal theory T such
that I(T, w) < 2%, let p € S;(@) be non-algebraic type such that RC(p) = 1. Then
the set p(M) is indiscernible over @.

A function will be called non-trivial if it is neither a projection function nor the
identity function.

Definition 8.1.3 [10, P. 151] A type p € S,(®) is called simple if for any n € w
whenever f (x4, ...,x,) IS non-trivial @-definable, and a,, ..., a,, realize the type p,
then f(ay, ..., a,) does not realize p.

Definition 8.1.4 [77] Let we are given a one-type p € S;(A) which is non-
algebraic. The type p is binary over the set A if for each n < w and each increasing
tuples b = (by, ..., b,), and b’ = (b', ..., b",,) from [p(M)]" with tp((b;, bj)/A) =
tp((b';,b';)/A) forevery 1 <i<j<n, tp(b/A) = tp(b'/A). Ifthe type p € S1(®)
is non-algebraic it is binary over the empty set, we say simply that the type p is binary.

Lemma 8.1.5 [11, P. 138] Given weakly ordered-minimal theory T which has
less than the maximal number of countable nonisomorphic structures, given a non-
algebraic binary one-type p € S;(®). Then the type p is simple.

Corollary 8.1.1 [74, P. 1194] Let we are given a weakly o-minimal theory T of

convexity rank 1 with I(T,w) < 2“. Then every non-algebraic type p € S;(@) is
simple and binary.
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8.2 Orthogonality

Lemma 8.2.1 [11, P. 139] Let T be an arbitrary complete theory, M =T, A <
M, M be |A|*-saturated, m,n < w, @ = {ay, .., ay), @ ={a'’y, .., a'y) € M™,
b=<(by,...,b,) , b =(by, .., b,) €M™ such that tp(b/A) =tp(b'/4) |,
tp({a;, b)/A) = tp({a';, b';)/A) for all 1<i<m, 1<j<n,and tp({a by_1)/
A) = tp({d,b',_1)/A) . Then if tp((@,b)/A) # tp({a’,b’)/A) then there exists
b", €M for which tp(b,_q,bn)/A) = tp((bn—l_: b")/A), tp({a; Pn)/A) =
tp({a;, b'",)/A) for every 1 < i <m, and tp((a@, b,,_q, b,)/A) # tp((@ b1, b))/
A).

Lemma 8.2.2 [74, P. 1194] Given a weakly ordered-minimal theory T which has
a convexity rank 1 and such that I(T, w) < 2¢,let M = T, let A be a finite subset of
the universe of 9t, and let p, g be non-algebraic weakly orthogonal types from S, (A).
Then for each realizations a,a’ € p(M), b, <b,, b';<b',€qM),
tp({a, by, by)/A) = tp({a’,b',, b";)/A) holds.

Proof of Lemma 8.2.2 Suppose the contrary, that there are realizations a, a’ €
p(M), b, < b,, b’y <b', € q(M) such that tp({a, by, b,)/A) # tp((a’,b'y,b',)/
A). Because p and g are weakly orthogonal types, we have that

tp({a, by)/A) = tp((a’, b'1)/A) = tp({a, b,)/A) = tp((a’, b2}/ A).

By the Lemma 8.2.1 there exists a realization b", € q(M) such that tp({a, b,)/
A) = tp((a,b";)/A), by < b"; and tp({a, by, by)/A) # tp((a, by, b"3)/A).

Therefore, there is an A-definable formula R(x,y,z) with M &= R(a, by, b,) A
—R(a, by, b",). By weak ordered-minimality we may assume the set R(a, b;, M) to
be convex.

Denote q':=tp(b,/A U {a}) . Because the types p and g are weakly
orthogonal, ¢'(M) and g(M) are equal sets. Without loss of generality we can
consider that b, < b",. Now let us take the following formula:

F(x,b):=b;y < xA3Jy[R(a,b;,y) ANx < Y]

It is easy to check that the formula F(x,y) isa g'—preserving convex to the right
formula. This contradicts Lemma 8.1.3.

|

Following [70, P. 5435], 1.2, we will consider definable functions from M to its

Dedekind completion M, more precisely to sorts of M representing infima or
suprema.

Let A,D € M, D be infinite, Z € M be an A—definable sort and a function
f:D — Z Dbe A—definable. We call the function f locally increasing (locally
decreasing, locally constant) on the set D if for every element a belonging to D
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there exists an interval J € D which is infinite and contains {a} such that the function
f strictly increases (strictly decreases, is constant) on the interval J. The function f is
said to be locally monotonic on the set D if it locally increases or locally decreases
on the set D.

Proposition 8.2.1 [78] Let we are given a weakly ordered-minimal model 9, a
subset A € M, and a non-algebraic one-type p € S;(A). Then any A -definable
function f such that p(M) € Dom(f) is either locally monotonic or is locally
constant on the set p(M).

Corollary 8.2.1 [74, P. 1195] Let we are given be a weakly ordered-minimal
model 9t of a convexity rank 1, A € M, let p € S;(A4) be non-algebraic. Then each
A-definable function f such that p(M) € Dom(f) is either strictly monotonic or
constant on p(M).

Take A € B € M, let B be finite, and let p;,p,, ..., ps € S1(A) be non-algebraic
one-types. A family of 1-types {p, ..., ps} is called to be weakly orthogonal over the
set B ifall s-tuples (a4, ..., as) € p; (M) X ... X ps(M) satisfy the same type over the
set B. We say thata family {p,, ..., ps} of one-types is orthogonal over B if for every
sequence (ny,...,ns) € w°, and every increasing tuples a@,,a’; € [py(M)]™, ...,
as,a’s € [ps(M)]™s for which tp(a,/B) = tp(a'1/B), ..., tp(as/B) = tp(a's/B),
tp({(ay, ..., as)/B) = tp({a'y, ..., a’s)/B) holds.

Lemma 8.2.3 [74, P. 1195] Given a weakly ordered-minimal theory T of a
convexity rank 1 with I(T,w) < 2%, given a model MM = T, a finite subset A € M,
and nonalgebraic py,p,, ..., ps € S1(A) which are pairwise weakly orthogonal. Then
the family {p,, ..., ps} is weakly orthogonal over the set A.

Proof of Lemma 8.2.3 The proof is done by induction on s > 2. The step when
s = 2 is obvious. Now let us suppose that the condition of the lemma is established
for sets with s types, and let us prove it for sets with s + 1 types, {py, ---, Ps, Ps+1}-
Towards the contradiction let {p,, ..., ps+1} @ non-weakly orthogonal family over the
set A. Then there exist s + 1-tuples {(a, ..., ag, as; ), {a'y,...,a’s, a’s11) € p; (M) X
W X ps(M) X pgyq (M) such that

tp({as, .., Gs, As41)/A) # tp({a's, ..., @'s, A'541)/ A).

Therefore, there is an A-definable formula ¢ (x4, ..., x5, X51) With

M E @(aq, .., a5 051) A@(a'y, ...,a's,a’gq).

Lemma 8.2.1 implies that there is an element a" ., € po,; (M) with M E
—¢@(ay, ...,as,a’s41). Denote M' = (M, A, a4, ..., as_,). It is obvious that Th(M") is
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still a weakly o-minimal theory of convexity rank 1, and it has less than 2* countable
structures. The induction hypothesis ensures that p,_, (M), ps(M) and pg,, (M)
remain 1-indiscernible in M’, that is p,_;, ps, and p.,; have unique extensions
p's_1, p's and p’s,, respectively to 1-types over the union A U {a,, ..., as_,}, and the
types p'c_1, 9’5, and p’,,; are pairwise weakly orthogonal.

Let us rename p’s_,;, p»'s, and p's.; by p;, p,, and ps; also rename
@(aq, ...,g_9,Xs_1, X5, Xs4+1) DY @(xq, x5, x3); and the constants a,_,, ag, as,, and
a'c,, by a,a,a; and a'’;. Thereby, we have W' E @(a;, a, a3)A
—@(aq, az a’s), where a; € p;(M"), a, € p,(M"), as, a5 € p3(M").

Without loss of generality we can let a; < a'’;. By weak ordered-minimality we
can consider ¢(a,,a,,M") to be a convex set, and that for each a'; € p;(M")
—@(ay,a,,a’s) implies p(a,, a,, M) < a’'s.

Let us take f, (¥):=sup(@(ay,y,M")), gq,(x):=sup(p(x,az;,M')). If
fa,(az) € M’ then f, (a’;) € M’ for each a’, € p,(M") and f, is a function that
maps p,(M') to ps(M'). If f, (a,) € M’ then f, is a definable function from
p.(M’) toadefinable sort Z. Because p,(M") stays 1-indiscernible over {a;}, fo, (%)
does not change its behavior on p,(M"), and therefore by Corollary 8.2.1 it is either
strictly increasing, strictly decreasing, or is constant on p,(M"). If f; () is constant
then p, and p, are not weakly orthogonal.

Similarly, the same reasoning holds for p;(M") and g,,(x). Because p; (M) is
1-indiscernible in M’ over @, then if the function f, (y) is strictly increases on
p,(M’') then the function f,, (y) is strictly increases on p,(M') for each a’; €
p1(M").

Case 1. The function f; (y) is strictly increases on the set p,(M’). If g4, (x)
strictly increases on p,(M"), we take b, € p;(M") with a, < b; and consider the
formula F(x,a,, a;,b,):=Vz[p(a,,a,,z) = (b, x,2)] A x < a,.

Let p'y:=tp(a,/{as, b:}). By Lemma 822 p',(M)=p,(M) . And
F(x,y,aq,by) is p',-preserving convex to left, it is a contradiction with Lemma 8.1.3.

If gq,(x) isstrictly decreasing on p; (M) then we take b; € p;(M") such by <
a,, and we have F(x,y,a,, b;) to be also p’,-preserving convex to the left.

Case 2. If the function f, (y) isstrictly decreasing on p,(M"). If g, (x) strictly
increases on p, (M) then take b; € p;(M") for which a; < b, and consider the
following formula: F(x,a,, a,,by):=Vz[p(a,,a,,z) - @by, x,z)]ANa, <x. In
this case F(x,y,a,,b;) is a p', -preserving convex to the right formula, what
contradicts with Lemma 8.1.3.

If gq,(x) strictly decreased on p,(M’) then take by € p,(M’) for which b; <
a,, and we get that the function F(x,y,a,, b;) is also p’,-preserving convex to the
right.

m|

Theorem 8.2.1 [74, P. 1195] Let a theory T be weakly ordered-minimal of rank
of convexity 1, and such that I(T, w) < 29, let p4, ..., p,, € S;(@) be non-algebraic
pairwise weakly orthogonal. Then the family {p, ..., p,,} is orthogonal over @.
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Proof of Theorem 8.2.1 We prove the theorem by induction on m > 2.
Step 2. The proof is done by induction on (n,,n,). We show that for each
increasing

@ = (3,0, ) Oy ), @ = (03,0, o, @) € [, D],
b= <b11b2J ---lbn2>J b, = (bl1'b’2; ---;b,n2> € [pZ(M)]nZ

such that tp(a/®) = tp(a'/®), tp(b/®) = tp(b'/®) the following statement
holds: tp({(@,b)/®) = tp({a’,b")/®). The case (1,1) is trivial. Suppose that the step
2 is established for every (kq,k;) <iex (n1,n,) and let us prove it for (n,,n,) with
ny +n, > 2.

Towards a contradiction let us suppose that tp((@, b)/®) # tp({d’, b'}/®). The
weak orthogonality of the types p; and p, tp({a;, b;)/®) = tp({a’;, b;)/®) for
each 1 <i<n;, 1<j<n, Then Lemma 8.2.1 implies that there exists b"',, €
p2(M) with tp({bp,—1, bn,)/@) = tp((bn,—1,b"3,)/ D), tp(a;, bn,)/®) =
tp({a;, b"",,,)/®) for each index 1<i<n,;, and that tp({(a, by,_1,bn,)/D) #
tp((@, b, —1,b"n,)/®). Now let A: = {a@, 4, b,,_,}. By the induction hypothesis we
have that tp((b,—1, bn,)/A) = tP((bn,—1, b'"n,)/A).

Case 1. tp(by,-1/A) = tp(by,/A) . Let p'y(x):=tp(an,/A), p2(y):=
tp(by,-1/A). By the inductional hypothesis p’; 1" p’, and then, by Lemma 8.2.2 we
have tp({an,, bn,—1, byn,)/A) = to({an,, by,—1, b'"n,)/A) Which is impossible.

Case 2. If tp(by,,—1/A) # tp(b,,/A). Let p'; and p’, be as in the Case 1, and
that p';(z): = tp(b,,/A). By the inductional hypothesis p';, p', and p’; are
pairwise weakly orthogonal. Therefore by Lemma 8.2.3 tp({a,,, bn,—1, bn,)/A) =
tp({an,, bn,—1,b""n,)/A) which also contradicts the assumption.

Step m. Let us suppose that the theorem is proved for sets of k 1-types for each
k <m —1 and let us prove it for sets of m 1-types. By Lemma 8.2.3 holds the case
when n, =1,n,=1,..,n,, =1. Suppose that the step m holds for every
(ki, ko, oo k) <tex (1,15, ...,ny,) and prove it for (ny,n,,...,n,). Let us take

arbitrary increasing a,, € [p1(M)]"* , ap, € [p(M)]™? , .., Qn _, €
[Pm—2(M)]™m-2. The inductive hypothesis ensures that p,,_, and p,, have unique
extensions to p'p,_; and p'y,, the types over {a, , @,,, .., @, _,}, that is,

Pm-1(M) =p'_1(M), p(M) = p'rn(M).
Let M' =(M,a, ,a,, .., @y, _,)- The hypothesis also proves that p',,_, and
p',, are weakly orthogonal in M'. By the Step 2 {p’,,,_1, '} is an orthogonal family
in M" over the empty set, and consequently, {p,,—1, Pm} 1S Orthogonal over the set
{Qn,, Qnys vy Ap, ,} In M. Since {a, , @, .., d, _,} have been taken arbitrarily,
{p1, ..., pm} 15 Orthogonal over the empty set.
m|
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8.3 Non-weakly orthogonal 1-types and binarity of the theory

Further we will use the notion of a (p, g)-splitting formula, which was given in
[79] for principal non-algebraic one-types. Given asubset A € M, let p,q € S;(A4) be
non-algebraic types with p X" q. Extending the notion of a (p, q)-splitting formula to
the non-principal case, we say that an A-definable formula ¢(x,y) is a (p,q)—
splitting formula if there exists a € p(M) such that ¢(a, M) N q(M) is convex,
there exists a realization b € q(M) such that —¢@(a, b) holds, and for every b €
q(M) with —¢@(a,b) we have that ¢(a,M)Nq(M) <b that is, [p(a, M) N
q(M)]” =qM)~. If p,(x,y) and @, (x,y) are (p, q)-splitting formulas we say that
the formula ¢, (x,y) is less than the formula ¢, (x,y) if there is such a realization
a € p(M) that ¢,(a,M) N qg(M) < p,(a,M) N qg(M). It is easy to see that if p,q €
S.(A) are non-algebraic one-types such that p £% g, then there is a (p, q)-splitting
formula, and also the set of all the (p, q)-splitting formulas is ordered linearly. It is
also clear that for arbitrary (p, q)-splitting formula ¢(x,y) the function defined as
f(x):=sup(p(x, M)) is not constant on the type p(M).

Lemma 8.3.1 [74, P. 1197] Let T be a weakly ordered-minimal theory of
convexity rank 1 having less than 2% countable structures, M =T, AS M, A be
finite, p,,p, € S;(A4) be non-algebraic one-types, and let p, £ p,. Then

1) If exists a realization a € p;(M) with dcl(A U {a}) n p,(M) being empty,
then there is only one (p,, p,)-splitting formula.

2) If exists a realization a € p; (M) with dcl(A U {a}) N p,(M) # @, then there
are exactly two (pq, p,)-splitting formulas ¢, (x,y) and ¢,(x,y) suchthat ¢,(x,y)
is less than ¢, (x,y), and |[@,(a, M)\¢p,(a,M)] N p,(M)| =1 for any a € p;(M).

Proof of Lemma 8.3.1 1) Assume the contradiction: there are at least 2 (p4, p,)-
splitting formulas ¢, (x,y) and ¢, (x,y), and suppose for simplicity that ¢, (x,y) is
less than the formula ¢, (x,y). Then it is obvious that the set [¢,(a, M)\¢,(a, M)] N
p» (M) is infinite for any a € p; (M).

Consider an arbitrary b € p,(M) with M = ¢,(a, b) A =, (a, b), and take the
next formula: F(x,b):=b < x A3z[@p,(z,b) A =¢1(z,b) AVt((@,(z,t) A
—p1(z,t) Ab <t) - x <t)]. Itiseasytoseethat F(x,y) isa p,-preserving convex
to the fight formula which contradicts Lemma 8.1.3.

2) There is an A-definable function f:p;(M) — p,(M). It is each to show that f
is a strictly monotonic bijection. Take arbitrary a € p;(M). There exists b € p,(M)
with f(a) = b. Take the following formulas: ¢,(a,y):=vy < f(a), ¢,(a,y):=
y < f(a). It is clear that ¢, (x,y),p,(x,y) are (py,p,)-splitting, and also that
[@2(a, M)\, (a, M)] N p, (M) = {b}.

Analogical to the part 1) it can be shown that f is unique and there exist no other
(p1, p2)-splitting formulas.

|
Lemma 8.3.2 [74, P. 1198] Given a weakly o-minimal theory T of convexity rank
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1 which has less than 2“ models, let M =T, A € M, A is finite, py, p,, p3 € S1(4)
are different non-algebraic types with p; £¥ p,, p, £¥ p;. Then for all a,a’ €
p.(M) , b,b'€p,(M), cc €ps(M) such that tp({a,b)/A) =tp({a’,b")/
A)tp({a,c)/A) = tp({a’,c')/A), tp({b,c)/A) = tp((b’,c')/A) we have that tp({a,
b, c}/A) = tp({a’, b', ¢'}/A).

Proof of Lemma 8.3.2 Let us assume the contrary. Therefore there are a,a’ €
p,(M), b,b" € p,(M), c,c’ € p;(M) satisfying the condition of the lemma, and
tp({(a, b, c)/A) # tp({a’,b’,c')/A). Then by the Lemma 8.2.1 there is a realization
¢ € ps(M) with tp({a, c)/A) = tp({a,c")/A), tp({b,c)/A) = tp({b,c")/A), and
tp({(a, b, c)/A) # tp({a, b, c'")/A). Then, there exists formula R(x,y,z) whichisan
A-definable and for which 9t = R(a,b,c) A =R(a, b, c").

Now we prove that a, b, and c are pairwise algebraically independent over A.
Otherwise if for example b € dcl(A U {a}), then there should be an A-definable
formula 8(x,y) with M = 6(a, b) A 3! yB(a,y). Take the following formula:

R'(x,2):=Vy[0(x,y) - R(x,y,2)].

Then M = R'(a,c) A =R'(a,c'’), which is a contradiction with tp({a,c)/A) =
tp({a,c”)/A).

Without loss of generality suppose that ¢ < ¢”’. Then, changing if necessary, by
weak ordered-minimality we may think that R(a, b, M) is a convex set, and for any
¢’ € p3(M) —R(a,b,c") implies R(a,b, M) N p3;(M) < c'.

Let ¢,3(x,y) be a (py, p3)-splitting formula, ¢,3(x,y) be a (p,, p3)-splitting
formula. Then either @3(a, M) N p3(M) S @,3(b, M) N p3(M), or @,3(b,M) N
p3(M) € @13(a, M) N p3(M) . If @i3(a, M) Np3(M) = @,3(b, M) N p3(M), then
strict monotonicity of the function &,3(x): = sup@,3(x, M) on p,(M) implies that
b € dcl(A U {a}) which contradicts our assumption. If |[¢,3(b, M)\¢@3(a, M)] N
ps(M)| =1, 0r |[p13(a, M)\@,3(b, M)] N p3(M)| = 1, then we can also see that b €
dcl(AU{a}) . Suppose that ¢;3(a,M)Np3;(M) C @,3(b,M)Np3(M) . Then
|[@23(b, M)\@13(a, M)] N ps(M)| > 1. Because tp({a, c)/A) = tp({a,c”'})/A), then
either ¢,c" € @3(a, M), or c,c" € —¢p,3(a, M). Without loss of generality suppose
the first. case Let p'y:=tp(a/A U {b}), p'5:=tp(c/A U {b}). It is clear that p’; is
not weakly orthogonal to the type p’;, and that R(x, b, 2), @,5(x,2) are (p'1,p'3)-
splitting  formulas, moreover |[@13(a, M)\R(a,b,M)] N p3(M)| >1 which
contradicts Lemma 8.3.1. The case when ¢,5(b, M) N p3(M) € @,3(a, M) N p3(M)
can be considered analogically.

O

Lemma 8.3.3 [74, P. 1199] Given be a weakly ordered-minimal theory T of
convexity rank 1 which has less than 2“ models of countable cardinality, It = T,
ACS M, A finite, py,p,, p3 € S;(4) non-algebraic distinct types. Then for each
a,a’ € py(M), b,b’ € p,(M), c,c' € p;(M) such that tp({a, b)/A) = tp({a’,b")/
A), tp({a,c)/A) =tp({a’,c')/A), and tp({b,c)/A) = tp((b’,c')/A) it holds that
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tp({a, b, c)/A) = tp({a’, b', c'}/A).

Proof of Lemma 8.3.3 If p,;, p,, and p; were pairwise weakly orthogonal then
the proof follows from Lemma 8.3.2. If p;, p,, and p; are not weakly orthogonal then
the proof is implied by Lemma 8.3.2. So we suppose that p; LY p,, but p, £ ps.
Then p; 1% p3, in other case we get p; £ p,. Suppose that the result of the Lemma
8.3.3 is not true, therefore there exist a,a’ € p,(M), b,b’ € p,(M), c,c’ € p;(M)
satisfying the condition of the lemma, and there is an A-definable formula R(x, y, z)
such that M = R(a,b,c) A=R(d',b’,c"). By Lemma 8.2.1 there is such a realization
¢ € ps(M) for which tp((a,c)/A) = tp((a,c")/A), tp((b,c)/A) = tp({b,c")/
A) and M E =R(a,b,c').

Similarly to the proof of Lemma 8.3.2 we can see that a, b, and c are pairwise
independent over the set A. Without loss of generality let us suppose that ¢ < c”.
Changing, if it is necessary, by weak ordered-minimality we consider the set
R(a,b, M) to be a convex, and that for each realization ¢’ € p;(M), =R(a,b,c")
implies R(a,b,M) Np;(M) < c'.

Let p',:=tp(b/A VU {a}), p's:=tp(c/A U {a}). Therefore p,(M) = p',(M),
ps(M) = p'3(M), then R(a,y,z) is (p',, p'3)-splitting. Since p, and p; are not
weakly orthogonal, there exist a (p,, p3)-splitting formula ¢,3(x,y). You can also
see that it is a (p'y,p'3) —splitting formula as well. Because tp({b,c)/A) =
tp((b,c")/A) we have that either c,c"” € @,5(b, M), or c,c"’ € =¢p,3(b,M). Let us
suppose the first case. Then R(a,b,M) N p3(M) C @,3(b,M) Nnp3(M) , also
|[©23(b, M)\R(a, b, M)] N p3(M)| > 1, what contradicts to Lemma 8.3.1. The case
when p, £¥ p,, p, 1Y p3; can be shown analogically.

O

Lemma 8.3.4 [74, P. 1199] Let T be a weakly ordered-minimal theory of
convexity rank 1 having less than 2¢ countable models up to an isomorphism, let
M ET, AS M, the set A be finite, p;, p, € S;(A) be non-algebraic one-types over
A, and p; £% p,. Then for each realizations a,a’ € p,(M), b; < b,,b’; <b', €
p2(M) for which tp((a,b,)/A) =tp((a’,b'1)/A) , and tp((a,by)/A) =
tp({(a’,b’,)/A) we have that tp({a, by, b,)/A) = tp({a’, by, b’,)/A).

Proof of Lemma 8.3.4 Towards the contradiction suppose that there exists an A—
definable three-formula R(x,y,z) such that M = R(a, by, b,) A =R(a’,b';,b',) for
some realizations a,a’ € p;(M) , by <b,,b'y <b', € p,(M) for which the
following holds:

tp({a, by)/A) = tp({(a’,b'1)/A), and tp((a,by)/A) = tp({a’,b';)/A).

By Lemma 8.2.1 there exists such a realization b", € p,(M) that b; <

b",, tp (mfZ)) =tp ((a’l‘:#),and M = —=R(a, by, b").

By analogy with the proof of Lemma 8.3.2 it can be established that the elements
a, b; and b, are pairwise algebraically independent over A.
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Let p's(x):=tp(a/AU{b}) , p2(x):=tp(by/AU{a}), and p",(x):=
tp(bz/A U {a}).

Case 1. p', = p",. Let us suppose that b, < b",. By weak ordered-minimality
we may consider R(a, by, M) to be convex. Then consider the formula:

F(x, bl): == b]_ <xA Ht[R(a, bl’ t) ANx < t].

We can easily check that F(x,y) isa p’,-preserving convex to the right formula.
Then we have a contradiction with Lemma 8.1.3.

Case 2. p', # p'"’,. Because p; £¥ p,, there exists a (p4, p,)-splitting formula
¢(x,v), and because p’, # p"’,, we have M = ¢(a, b)) A —¢(a,b,).

Because the function defined as & (x): = supg(x, M) is strictly monotone on the
set p,(M), there is a; € p,(M) with the condition M E=a < a; Ap(ay, b)) A
—1¢(ay, by).

Now let us consider the functions: &(x):=supe(x,M) , f,(¥):=
supR(a,y, M), and g, (x) := supR(x, by, M).

Subcase 2a. § is strictly decreases on p; (M).

Let us suppose that the function f,(y) strictly increases on p’,(M). If the
function g, (x) strictly increases on p'; (M) as well, we take a; € p,(M) for which
MEa<a  ANp(ay, b)) A=p(ag,by) . Then  @(ay, M) Np,(M) € p(a, M) N
p,(M). Now let us take the next formulas:

®,(y,b1,a,a1):= @(a,y) ANy < by AVZ[R(a, by, 2) > R(ay,y,2)]
O, (y,by,a,a1):= @(a, y) Ny < by AV, VzZ[~ D, (y1,b1,a,a1) A
p(a,y1) ANy1 < by AR(a,y1,2) = R(ay,y,2)],n = 2.

Then the following holds: &,(M,b,,a,a,) € ®,(M,b;,a,a,) C -+ C
®,(M,bq,a,a,) C ---.
Consider the family of formulas: p',(y) U {y < b;} U {=®,,(y,by,a,a,)|n €
w}. This set is locally consistent, and because of that there is q € S;(A U {a, ay, b, })
which extends this set of formulas, and which is non-isolated. Then T(A U {a, a;, b,})
has 2 countable structures which contradicts the hypotheses of the lemma.
If gy, (x) is strictly decreasing on p’; (M) then take a; € p;(M) such that

MEa>a Ap(aq, b)) AN=@(aq, by).

Considering the same formulas &,,(y,b;,a,a,), we will obtain a similar
contradiction.

Let us suppose that the function f,(y) is strictly decreases on p’,(M). If the
function g, (x) is strictly increasing on p'; (M) then take a; € p;(M) such that
M Ea<a ANp(aq, b)) AN=@(aq,by). In this case we replace y < b; in formulas
®,(y,by,a,a,) by y>=b; , and we also obtain that &,(M,b;,a,a;) C
®,(M,by,a,ay) € - € ®,(M,by,a,a;) € --- Next we take the next family
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formulas: p',(y) U{y > b; Ap(ay,y)} U {~D,(v, by, a,a;)|n € w}. It can be also
seenthat T(A U {a,a,, b,}) has 2% countable structures contradicting the hypotheses
of Lemma 8.3.4.

Subcase 2b. The function ¢ is strictly increasing on p; (M).

Without loss of generality suppose that the functions f,(y) and g, (x) are both
strictly increasingon p’,(M) and p’; (M) respectively (the other cases can be handled
in a similar way). Let a; € p;(M) be an arbitrary element such that M £ a < a; A
p(aq, b)) AN =@(aq, by) . Therefore we have the following: ¢(a, M) Nnp,(M) C
¢(ay, M) N p,(M).

Further in the formulas ®,,(y, b;,a, a;) we replace ¢(a,,y) and @(a,,y;) by

@(a,y) and @(a,y;) respectively.
Letforany i > 1

Bi(b1’ a, a’liz) = 3:yl [_lq)i(yll bll a, al) A (p(a) yl) A R(a' yl'Z)]'
Suppose that we have already proved that
ch(M' bl! a, al) c CDZ(MJ blf a, al) c - C CDL'(M' bli a, al)'

Step i. Consider sup B;(by,a,a,M) . If sup(B;(by,a a,M)) >
sup(¢(a;, M)), then we obtain that ®;(M, b;,a,a,) € ®;.,(M,b;,a,a,) and we
move to step i+ 1. Suppose that supB;(b,,a,a,;, M) < sup@(a,, M) . Because
supp(a, M) < supB;(b;, a,a,, M), then due to § being strictly increasing, there is a
realization a! € p,;(M) located in the interval a < a! < a;, and supp(at, M) <
supB;(by, a, a;, M). It is not hard to see that ®;(M, b,,a,a}) € ®;(M,by,a,a,) for
every 1<j<i, that is infd;(M,b,,a,a}) > inf®;(M,by,a,a,), and therefore
supB;(by, a, ai,M) > supB;(by,a,ay, M) forany 1 <j <. Thus, we have

ch(M' blia' ai) c q)Z(M' blr a, ai) c . C CDL'+1(M' blia' ai)

Let us change for simplicity our notation, replace al by a; and move to the step

i + 1. Thus, for each n € w we can construct a chain of length n: ®,(M, b,,a,a,) C
®,(M,b,,a,a,) € - d,(M,by,a,ay).

Therefore we also obtain that T(A U {a,a;, b;}) has 2% countable structures,
contradicting the statement of the lemma.

O

Lemma8.3.5[74,P. 1201] Let T be a weakly o-minimal theory of convexity rank

1 which has less than 2% countable models, M =T, A € M, A be finite, p;,p, €

S1(A) be non-algebraic one-types over A, and p; be non-weakly orthogonal to p,.

Then for every n;,n, <w and every increasing a =(a;,qa,..,ap,), a =

(alli (1’2, "'la,n1> € [pl(M)]nl | b= (bpbz' ""bn2> ’ b, = (bllibIZJ "'Jb,n2> €

[p,(M)]™> for each i and j such that 1<i<mn;, 1<j<n, tp((a;b;)/A) =
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tp((a';, b';)/A) the following holds: tp({a, b)/A) = tp({a’, b')/A).

Proof of Lemma 8.3.5 The proof of the lemma is done by induction on (nq, n,).
The step (1,1) is obvious. Now let us suppose that Lemma 8.3.5 is true for all (kq,k,)
such that (kq,k,) <jex (nq,n,). Let us prove the lemma for the case (n,n,) with
ny +n, > 2. Suppose the contrary: there exist an A—definable formula R(x,y) and
increasing tuples a,a’ € [p;(M)]™, b,b’ € [p,(M)]™ satisfying the hypotheses of
the lemma, and such that

M & R(@,b) A —R(d,b").

Therefore by Lemma 8.2.1 there exists b",,, € p,(M) for which b,,_; < b, ,
tp({a;, by,)/A) = tp({a;,b"y,)/A)1 < i < ny, and M = R(@, by, 1, by,) A
=R(@, by,—1,b"y,). )

Denote by B the following set, B:= AU {a,,_1,bn,—,}. By the inductive
hypothesis  tp((bn,-1,bn,)/B) = tp((bp,—1,b"n,)/B), and  tp((an,, bn,)/B) =
tp((@ny, b"n, )/ B).

If tp(bn,-1/B) =tp(by,/B) then by Lemma 821 we have
tp({an,, bn,-1,bn,)/B) = to({ay,, by,—1,b"",,)/B), What contradicts to our
assumption. If tp(b,,_1/B) # tp(b,,/B), then by Lemma 8.3.3 we also have
tp((@nys bry-1, b}/ B) = tP({@ny) by1, b, )/ B).

m|

Theorem 8.3.1 [74, P. 1202] Every weakly ordered-minimal theory of convexity
rank 1 which has less than 2 countable models is a binary structure.

Proof of Theorem 8.3.1 Let the one-types p,,p,..,0s € S1(®) be non-
algebraic. The proof will be done by induction on s > 2, we will show that for_every
Ny, Ny, ..., Ny < w and every increasing tuples a, , a’y, € [p1(M)]™, a,,, a'y, €
[p2(M)]™2, ..., @y, @'n, € [ps(M)]™ such that for every iy, iy, j, k: 1 <iy < i, <s,
1<j<n, , ad 1<k<n, tp(ay, ak }/0) =tp((a}. ), @k )}/0) .

Py, An,) e s Ay )/ D) = tp({@'y,, @', - s @'y, )/ D) holds.

Step s = 2. If the type p, is weakly orthogonal to the type p,, then Lemma
8.2.3 and Theorem 8.2.1 imply that the set {p,,p,} is orthogonal over @, that is the
previous formula holds. And if p, £ p,, then it follows from Lemma 8.3.5.

Now let us suppose that the conjecture holds for every k < s — 1. And we will
prove it for s. Consider the case n;, = 1,n, =1, ...,ng = 1. Assume the contrary:
there is (aq,a,,..,as) , (a'y,a'5,,..,a's) € py(M) X p,(M) X ...X ps(M) with
tp({a;, a;)/A) = tp({a’;,a’;)/A) holding forevery 1 <i <j < s, and thereisan @—
definable formula R(x) with I = R(ay,a,, ...,as) A=R(a'y,a’y, ..., ds).

Lemma 8.2.1 implies that there exists a realization a'’; € p,(M) such that
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tp({a;, a"’s)/0) = tp({a;, as)/@) for every 1 <i<s—1, and M = =R(ay,a,, ..,

As—1, a”s)-
Let A:={a,,a,, .., a,_3} and consider an A -type p's_,:=tp(as_,/A) ,
p's_1:=tp(as_1/A), p's:= tp(as/A). From the inductive hypothesis we have

tp({(as—2, as)/A) = tp({as—z, a”s>/A) and tp({(as-1,as)/A) = tp({as_1, a”s>/A)-

Then Lemma 8.3.3 implies tp({as_s, as_1,as)/A) = tp({as_,, as_q,a’"’s)/A)
which is a contradiction with our assumption. By this, the case n, =1,n, =
1,..,n, =1 is proved.

Let the assumption is true for every (kq,ky, ..., ks) <iex (04, Ny, ..., ng), and
prove it for (ny, n,, ..., ng). Towards the contradiction: there are increasing tuples

C_lnl’ a’nl € [I%(M)]nl, C_an, a,nz € [pZI(M)]nZ’ e C_lnsl a,ns € [ps(M)]ns with the
properties tp((ailil,aiiiz)/@) = tp(((a,ﬂil)’, (a5,))/®) for each iy, iz j k: 1<
ih<i<s, 1<j<n;, 1<k<n;; and there exists an @-definable formula
R(%p,, %y, ., %) sUch that M = R(@p,, Qn,y o) @n,) A R(@ny, @y oves ).
Then the Lemma 8.2.1 implies that there is a realization (aflj)” € p,(M) with

ayt < (ap)’ . tp(lal,an)/A) = tp((a), (ans)""y/A) for all 1<i<s-—
1 and 1<j<n;, M E =R(@,,0n,, ) 8ng_, Gne—1, (a°)").
Denote B:= {a, ,dn,, - An,_,, Qn,_,—1, An,_ -1,y -1}, and take the types:

P,s—25 = tp(ans_z/B)’ p,s—l: = tp(ans_l/B)’ p,s: = tp(ans/B)-
The inductive hypothesis guarantees that tp({a,,_,,a,.)/B) = tp({a,,_,,a" )/
B), tp({an,_,, an,)/B) = tp({an,_,,a"n,)/B).
Then by the Lemma 8.3.3 we have that tp({a,,_,,an_,,an )/B) =
tp({an,_, an,_,,a"'n.)/B) which contradicts our assumption.
O

8.4 Sets of realizations of non-principal 1-types

Definition 8.4.1 [71, P. 1390] Let we are given be a weakly ordered-minimal
structure Mt, a subset A € M, and a non-algebraic type p € S;(A). The type p is
quasirational to the right (quasirational to the left) if there exists an A—definable
convex one-formula U,(x) € p such that for each sufficiently saturated structure
N >M U,(N)* =p(N)* (Up,(N)~ = p(N)~). Anon-principal 1-type is called to be
quasirational if it is either quasirational to the right or it is quasirational to the left.
A non-quasirational non-principal 1-type is irrational.

It is obvious that a one-type which is both quasirational to the left and
quasirational to the right is principal.

Fact 8.4.1 [74, P. 1203] Let we are given a weakly ordered-minimal theory T, let
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It beamodel of T, p € S;(@) be quasirational to the right (quasirational to the left)
one-type. Then Mt does not contain a greatest (least) realization of the type p.

Proposition 8.4.1 [71, P. 1390] Given T a weakly ordered-minimal theory, 9t a
model of T, A € M, p,q € S;(A) non-algebraic types with p £% q. Then:

1) p isirrational if and only if g is irrational;

2) p isquasirational if and only if q isquasirational;

In [57, P. 1] weakly ordered-minimal Ehrenfeucht theories of convexity rank 1
which have non-weakly orthogonal quasirational 1-types over @ were constructed. We
present these theories in examples 8.4.1 and 8.4.2.

Example 8.4.1 [74, P. 1203] Let M = (M; <, P1,U?, ¢;);c,, be alinearly ordered
such that the set M is a disjoint union of interpretations of 1-predicates P and =P,
for which P(M) < =P(M). We identify each of the interpretations P and —P with
the set of rational numbers @, ordered as usual.

The symbol U interprets a binary relation defined as follows: for all a,b € M,
M e U(a,b) if and only if MM = P(a) A=P(b) and (viewing a,b as rationals)
(R; <, +)E b < a+2

The constants c; interpret an infinite strictly increasing sequence on P(M) such
that limi_,ooci = OOP(M)

It can be shown that Th(9t) is a weakly ordered-minimal theory of convexity
rank 1. Let px):={c; <x|i€ w}U{P(x)}, q(y):={Vt[U(c;,t) =t <y]|i €
w}U{=P(y)}

It is obvious that p,q € S;(@) are quasirational to the right, and p £" q.

We state that Th(9t) has exactly 4 countable pairwise non-isomorphic
structures: the first case — p and g are not realized; the second case — the sets of
realizations of p and g have the order type (0,1) N Q (the saturated case); the other
two cases —the realization set of one of p or g has the order type of [0,1) N Q, and
the realization set of the second — the order type of (0,1) N Q.

Example 8.4.2 [74, P. 1204] Let M = (M; <, P}, ...,PLUZ, ..., U2_1, ¢;)ice bE
linearly ordered such that M is a disjoint union of interpretations of the predicates
Py, ..., B, with P;(M) < P,(M) < --- < B,(M). We identify each of the interpretations
Py, where 1 < k < n, with the set of rational numbers @, ordered as usual.

The symbols U;, where 1 <j <n—1, interpret binary relations defined as
follows: for all a,b € M, M = U;(a,b) if and only if M = P;(a) A P;;,(b) and
(R;<,+) = b < a+ [p;, where p; isthe j** prime number.

The constants c; interpret an infinite strictly increasing sequence on P; (M) such
that limi_,ooci = OOP1(M)'

It can be shown that Th(90t) is a weakly ordered-minimal theory of the convexity
rank 1.
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Let

p1(x): = {c; <x|i € w} U {P1(x)},
pj(x):={Vt[Ui_1(c;,t) >t <x]li Ew}U{P;(x)},2 <j<n

Itis clear that p, ..., p, € S;(®) are quasirational to the right, and {p4, ..., pn} IS
pairwise non-weakly orthogonal.

We state that Th(9t) has exactly n + 2 countable pairwise non-isomorphic
structures: the first case — p,, ..., p,, are not realized; the second case — the sets of
realizations of each of p,, ..., p,, have the same order type (0,1) n Q (the saturated
case); the remaining n cases — the realization set of only one of p, ...,p, has the
order type [0,1) N Q, and the sets of realizations of the remaining types — the order

type (0,1) N Q.

Here we present examples of Ehrenfeucht weakly ordered-minimal theories of
rank of convexity 1 which have non-weakly orthogonal irrational 1-types over @.

Example 8.4.3 [74, P. 1204] Let the structure I = (M; <, P*,U?,¢;,¢'}); jew bE
linearly ordered, and the set M be a disjoint union of interpretations of unary
predicates P and —P with P(M) < =P(M). We identify each of the interpretations
P and —P with the set of rational numbers Q, ordered as usual.

The symbol U interprets a binary relation defined as follows: for all a,b € M,
M &= U(a,b) ifandonly if M = P(a) A=P(b) and (R;<,+) E b < a ++/3.

The constants c; and c’; interpret an infinite strictly increasing and an infinite
strictly decreasing sequences on P(M) respectively with lim;_.c; = \/EP(M) =
lim;_ ;.

Let us construct all the models of the theory T. They are graphically represented

on the Picture 1.
It follows from the definition of U, that P(x) and —=P(y) are mutually dense:

ME Vx1Vx2[(P(x1) ANP(x,) ANxy < xp) & Ely(ﬂP(y) AU(x5,7) A —|U(x1,y))],
and
M EVy, VY, [(2P(y1) A P) Ayr <yz) € 3x(P(x) AU(x, y1) AU (x, y2))]-

This means that together with density of ordering on P(M) and on —P(M),
elementary theory T = Th(9t) admits quantifies elimination.Theory T is weakly
ordered-minimal of rank of convexity 1 since each 1-formula which has parameters
from the set M can be represented as a Boolean combination of convex 1-formulas
and there exists no definable non-trivial equivalence relation. Consideration of
quantifier-free n-types gives us that the theory T is a small theory.

Any one-formula from the following set determines a principal one-type over an
empty set:
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{x <cp,cor <xXAP(x),=P(y)AU(cy,y),mU(co,y) NPy}, {c;i <x <
Ci+1r Cj+1, <x< Cjn _'U(CiJ y) A U(ci+1’ }’), _'U(Cj+1' y) A U(Cj' Y)ll,] € w}

P(M)) —P(M)
_ﬁfl == _.'1.{ —t— +—t +—t -— .
p(My) 24 q( M)
ﬂfj +— +—
{_"'1;_’_'.2,., Céfi
Jlf,j *—l—l—-v l- +— +— i ) —t—t—
C]_C?,., ¥ Cfr}_'fi [/'I(ﬂ'._y)
4'1'14 ~—|—|—- ) +—t +—t . —
M; — — f
e o b U(a,v)
JlfG t i —t —t - }
C]_C? s Cfr}_"':i !{'I(ﬂy}
ﬂf? +— —t — { }
C1cg--- g Gy - Cfrg (;’i s Ular,y) Ulas,y) -
Jlfg —t { + + + +
{_"]_ Cg R U(;l?_._ J:_',;) P Cfr}_‘(.'i - ,\'3
ﬂfg t — } . — — .
Mo — s : } — —
C1C2 - - - Ulx,f1) Ulz,Ba) " - cé C'& vt ’31 ‘5’2
ﬂ-f“ — } —+ —t {
i A (g, f) " che “Ula,y) B
ﬂ.]rlg }

+—+ N T T S
‘Uz, p) @ " che B Uley)

Picture 1

There exist only two non-principal one-types p(x) and q(y) over empty set:

67



p(x) = {ci <x< c’j|i,j € a)} U{P(x)},
q(¥):={=U(c;, y) AU, p)]ij € w} U {=P(¥)}.

Let i, be a countable structure of T such that p(x) and q(y) are omitted in
I0t,. Then this structure is isomorphic to the initial model 9t and MW, is elementary
embedded in any structure of T. So, 9, is prime structure of T since it is countable
and atomic.

Because T is weakly ordered-minimal, in each structure of the theory T, for each
1-type of T the realization set of this 1-type is a convex set [73]. Denote by M, a
countable structure of the theory T such that P(M,) is non-definable and dense order
without end elements. Then it follows from the properties of 2-formula U(x,y) that
the set q(M,) is non-definable and dense ordered without end elements.

Because every countable dense order is embedded into a dense order without end
elements and the theory T admits elimination of quantifies any countable structure of
T is elementary embedded into M,. So, 9t, countable saturated structure of T and
therefore, T is small.

Let « € p(M,). Because theory T admits quantifies elimination, we have five
new one-types over a.

Po(x,@):=p(x) U {x = a}, p1(x,a):=p(x) U{x < a},
p2(x,a):=p(x)Ufa <x}, (v, @):=qy) U{U(a,y)},
q.(y,a):=q(y) U {~U(a,y)}

One-type p, is algebraic, p, and p, are non-principal, rational one-types over
a, q; and g, are non-principal, quasi-rational, non-rational one-types over a. It
follows from definition of U(x,y) that p; =gk 91,92 =rx 92,1 1" g2, 02 LY q;.

Here, p; =gk q; means these two one-types are simultaneously realized or
simultaneously omitted in any structure of T. Denote by t; prime structure over a.
Then by the previous statement, p(M3) = {a} and q(M3) = @.

Let § € q(M,). Because the theory T admits quantifies elimination, we have
five new 1-types over S:

o B):=q)V{y=F} q1(x,B):=q) U{y <p},
q2: (¥, B):=q() U{B <y} pu(x,B):=p(x) U{U(x,B)},
P2 (x, B):=p(x) U {=U(x, B)}-

The 1-type qo, is algebraic, q,, and q,, are non-principal, rational one-types
over 3, p,, and p,, are non-principal, quasi-rational, non-rational one-types over f3.
It follows from the definition of U(x,y) that
P1r =rk 91 P2r =rk 920 P1 LV Q2 D20 LY q1.

Denote by M, prime structure over B. Then by the previous formula, q(M,) =
{B} and p(M,) = Q. Let ay,a, € p(M,), B1,F2 € q(M;) such that a; < ay, B <

P
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M, = U(aq, Br) AU (aq, B2) AU(ay, Br).

By using properties of types we can construct the countable structures My — M,,
suchthat p(M;) and q(M;) have different properties on the endpoints of these convex
sets.

An arbitrary countable structure N = T is isomorphic to one of these twelve
countable structures, represented. Indeed, consider two convex sets p(N) and g(N).
It follows from the previous statements that if one of these two sets is singleton then
second is empty set. If one of these two sets has more two elements, then both sets are
infinite. If one of these two sets has endpoint, say left (right), then left (right) side of
second set is definable.

Example 8.4.4 [74, P. 1206] Let MM = (M; <, P}, ..., P}, UL, .., Us_1, ¢, ¢ jew
be linearly ordered, which universum M is a disjoint union of interpretations of
unary predicated Py, ..., B, with P;(M) < P,(M) < -+ < P,(M). We identify each of
the interpretations Py, ..., P, with the set of rational numbers @, ordered as usual.

The symbols U;, 1 < j <n — 1, interpret binary relations defined as follows: for
all a,b €M, M E Uj(a,b) if and only if M E P;(a) A =P 1(b) and (R; <, +) E
b<a+ \/p_ where p; is the jt" prime number greater than 2.

The constants c; and c’; interpret an infinite strictly increasing and an infinite
strictly decreasing sequences on P;(M) respectively, moreover lim; .c; =
V2p,ary = limy oo’

It can be seen that Th(M) is a weakly ordered-minimal theory of rank of
convexity equal to 1. Denote

p1(x):={c; <x <cjli,j € w}U{P(x)},
pi(x): = {Vt[U;(c;,t) » t < x]|i € 0} U{U,(c';,¥)|j Ew}U{P(x)},2 <[ <n,

It is obvious that p4, ..., p, € S;(@) are irrational types, and that {p,, ...,p,} IS a
pairwise non-weakly orthogonal family.

Let 1<j<n-—1 and for every 1 <0<n-—1 such that i #j denote the
following: U;;(y, z) = 3t[-U;(t,y) A P, (t) AU;(t, z)]. We state that this formula is

(Di+1,Dj+1)-splitting.

Fact 8.4.5 [74, P. 1206] The following is true foreach 1 <i #j <n—1:

1) The set U;(a, M) (U;;(a, M))has no endpoint from the right in M for all a €
Pi(M) a € Py, (M));

2) The set U;(M, b) (U;;(M, b)) has no endpoint from the left in M for all b €
Piv1 (M),

Fact 8.4.6 [74, P. 1206] The next is true foreach i <i #j <n —1:
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1) fj(x): = supU;(x, M) strictly increases on P, (M);
2) fij(x) = sup U;;(x, M) strictly increases on P;,(M).

We state that theory Th(9t) has exactly 4n+ 2+ 2C? (where C2 is the
binomial coefficient, that is, the theory has exactly 2CZ = n(n— 1)) countable
pairwise non-isomorphic structures: the first case — py, ..., p, are not realized; the
second case — the sets of realizations of each of the types p,, ..., p, have the order
type (0,1) N Q (the saturated case); the following n cases — only one of p4, ..., p,
is omitted by a singleton, and the remaining types are not realized; the following 3n
cases —the realization set of only one of p,,...,p, has the order type [0,1) N Q,
(0,11 n Q or [0,1] N Q, andthe realization set of the remaining types — the order type
(0,1) N Q; and the remaining 2C2 cases —the realization set of one of the types
pi, -, Pn has the order type [0,1) N Q, and the realization set of another one of
p1, ., Pn has the order type (0,1] N Q, and the sets of realizations of the remaining
types have the order type (0,1) N Q.

Indeed, understand that if there is countable M’ = T such that p,(M") has the
order type [0,1) N Q ((0,1] n @) and p,(M") has the order type (0,1] N Q ([0,1) N
Q) thenforany 3 <j <n p;(M") # @ and p;(M’) has no endpoints in M.

If there exists 3 < j <n with p;(M") = @ then taking a,,a, € p;(M") with
a; < a, we obtain that f;_;(a;) = fj_1(a;), which is a contradiction with Fact 0.4.

Suppose now that there exists such a natural number 3 <j < n that the type
p;j(M") has at least one endpoint. For simplicity, let the element ¢ be the left endpoint
of p;(M"). Then if a is the left endpoint of the set p,(M’), we have that
Ui—1(a,M") <p;(M’), that is, c is the right endpoint of U;_;(a, M"), which is a
contradiction with Fact 8.4.2.

m|

Proposition 8.4.2 [74, P. 1207] Given a weakly ordered-minimal theory T of
convexity rank 1 which has less than 2% countable models, let 9t be the countable
saturated structure of T, p; € S;(©@) be a non-principal type over an empty set. Then
the following conditions are true:

1) If p, isirrational and for each one-type q € S, (@) such that p, £% g there
iIs an @-definable bijection from p; (M) to q(M), then for each of the following six
possibilities there exists a countable structure M; of T in which it is exactly realized:
p1(My) =0; |pr(My)| = 1; py(M,) is order-isomorphic to (0,1) N Q, [0,1) N Q,
(0,1]nQ,or [0,1] N Q.

2) If the type p, is irrational and there exists a family of types 1 = {p; €
S1(@®)|py £ p;,2 < i <n} such that for each types p’,p"" € A there is no Q-
definable bijection from p’'(M) to p''(M), then for each of the following 4n + 2 +
2C2 possibilities there exists a countable structure M; of T in which it is exactly
realized: p;(M;) =@ for any 1 <i<n; p;(M;) is order-isomorphic to the set
(0,1))NQ for each 1 <i<n; there is 1 <i<n with |p;(M;)|=1 and the
remaining p;(M;) (j #i,1 <j <n) are empty; there exists 1 <i <n such that
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p; (M) isorder-isomorphicto [0,1) N Q, (0,1]n Q or [0,1] N Q, and the remaining
pj(M;) (j # i,1 < j < n) are order-isomorphic to (0,1) N Q; there exist distinct i, j
with 1 <i,j <n such that p;(M;) is order-isomorphic to [0,1) N Q, p;(M,) is
order-isomorphic to either (0,1] n Q or [0,1) N Q, and the remaining types p,(M;)
(s #i,s #j,1 < s < n)are order-isomorphic to (0,1) n Q, and conversely.

3) If p; iIs quasirational to the right (or to the left) and for every one-type q €
S.(@) for which p; XY q there exists an @-definable bijective function from p; (M)
to g(M), then for each of the following three possibilities there exists a countable
structure M; of T in which it is exactly realized: p;(M;) = @; p,(M,) is order-
isomorphic to (0,1) N Q; p;(M;) is order-isomorphicto [0,1) N Q ((0,1] N Q).

4) If p; is a quasirational type and there exists a family A= {p; €
S.(@®)|p, £¥ p;,2 <i <n} such that for each types p’,p"’ € 1 there is no Q-
definable bijection from p'(M) to p"’(M), then for each of the following n + 2
possibilities there exists a countable structure M; ofthetheory T inwhichitis exactly
realized: p;(M;) =0 for any 1 <i <n; p;(M;) is order-isomorphic to the set
(0,1) N Q for each 1 <i < n; there is a number 1 <i <n such that p;(M,) is
order-isomorphic to either [0,1) N Q (p; is a quasirational to the right type), or it is
order-isomorphic to (0,1] N Q (when the type p; is a quasirational type to the left),
and the remaining p;(M;) (j # i,1 < j < n) are order-isomorphic to the (0,1) N Q.
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Proposition 8.4.3 [74, P. 1208] Let T be a weakly ordered-minimal theory of
convexity rank 1 having less than 2¢ countable structures. Let 9t and 9t be
countable structures of T such that for all p € S; (@) p(M) is order-isomorphic to
p(N).Then M and N are isomorphic.

Proof of Proposition 8.4.3. Consider {m; | i € w} and {n; | i € w} to be
enumerations of the sets M and N respectively.

Step 0. Take AM, AY denote dcl(®) in M and Jt respectively. Define a partial
isomorphism fy: AX¥ — AY by an obvious way.

Step 1. Choose the least index i € w such that m; € AY. We have that m;
realizes a type p which is not algebraic over @. Next, consider all g € S; (@) with
qgx¥p. Let Al:=AY upWM) U {g(M)|q £¥ p}. Define AY in a similar way.
Because the sets p(M) and p(N) are order-isomorphic, we can extend the partial
isomorphism from p(M) into p(N), and correspondingly from q(M) into q(N) for
any non-weakly orthogonal type q € S;(®). Let f;: A — AY be the corresponding
partial isomorphism. It is clear that f; extends f,.

Step k. Let us suppose we have already constructed fj,_;, Ay, and A¥Y_, for
which f,_:A¥ , - A¥_, is a partial isomorphism. Find the smallest i € w for
which m; € AY_,. Then m; € dcl(®) and there is a non-algebraic p € S; (@) such
that m; € p(M). Clearly p is not realized in A¥_,, and the same is true of any g €
S;(®) which is not weakly orthogonal to p . Let A¥:=AM upWM)u
{q(M)|q £* p}. Similarly, A¥_, is defined, and a partial isomorphism f: A¥ — A¥
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extending f,_, Is constructed.

Finally, we define the desired isomorphism f: M — N as f:= Ukew fi-

O

Proof of Theorem 8.1 Let us suppose that T is not a countably categorical
theory, and it has less than 2“ countable structures. Let A, A, be maximal pairwise
weakly orthogonal families of irrational and quasirational 1-types over @ respectively.
Itis clear that A; and A, are finite. Suppose that, if for example 4, was infinite,
then we would get that the theory T would have 2“ countable nonisomorphic models.

Let A, = {p. P01}, Ay ={q1, 92 .., @} fOr some nonnegative integers
Lm < w. Also let A} = {pi|p; £ pl, s € w}, A]2 = {q,{|qj X% q,fc.,k € w} for every
integers1 <i <1, 1 <j<m,andlet |A}| =k;,and |A,]| = ;.

If k; =1 then we set n; = 6, where n; is the number of possibilities for
pairwise non-isomorphic countable structures of T, because by Proposition 8.4.2 the
theory T has exactly 6 countable structures with different order types of the realization
setof p;. If 1 < k; < w then n; < 4k; + 2 + 2CZ,. Obviously, 2C2 < k7. If k; = w
then n; < w.

Further if y; = 1 then we set t; = 3, where t; is the number of possibilities for
pairwise non-isomorphic countable structures of T, because by the Proposition 8.4.2
T has 3 countable structures with different order types ofthe realization set of gq;. If
1<yij<wthent;<y;+2.If yy=w then t; < w.

We state that the theory T has no more than 6!_n; * 6;2,t; countable
structures, where TIl_,n; =n; *n, * ..xn; , M2t =ty *t; x ..xty, and the
symbol = is the operation of multiplication of cardinals. It is clear that the product
Ml n; I1Z,¢;, is greater than or equal to 3 and less than or equal to w. This holds

because by rules of the cardinal arithmetic for the product of finitely many cardinals,
each of the cardinals is not greater than w, is either equal to w, or is less than w.
m|
By this we have proved the main theorem of the section, which states that the class
of weakly o-minimal theories of convexity rank 1 satisfies the Vaught conjecture.
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CONCLUSION

The dissertation considers countable models of small theories and their number
up to an isomorphism. Among classes under investigation are the classes of linearly
ordered theories, partially ordered theories, and dependent, namely, weakly o-minimal
of convexity rank 1, theories.

One of the questions was to find theories, which have the maximal, that is, 2¢,
number of countable non-isomorphic models. The main results in this direction are the
following:

1) In a countable complete theory of (an expansion of) a linear order if there exists
a subset of a finite cardinality of a model of this theory and a non-principal extremely
trivial 1-type over this subset, then the given theory will have the maximal number
countable non-isomorphic models.

That is, if there exists a type, such that in a prime model over any finite number
of realizations it is realized only by those realizations.

2) If in a countable complete theory if there is a formula which defines a partial
order on elements, or on tuples of elements with the condition that for every arbitrary
natural number there exists a discrete chain of length not less than this natural number,
then the given countable complete theory will have 2* countable models up to an
isomorphism.

3) If in a countable complete theory of (an expansion of) a linear order there exists
a formula quasi-successor on some non-principal 1-type, then this theory has the
maximal number of countable non-isomorphic models.

The other question was to find a subclass of dependent theories, for which the
Vaught hypothesis holds. The main result on this question is the following:

4) The Vaught conjecture holds for the class of weakly o-minimal theories of the
convexity rank 1.

That is, in a countable signature a weakly o-minimal theory of convexity rank 1
is either countably categorical; is an Ehrenfeucht theory, namely it has k countable
models, for k between 2 and w; has w countable models, or has 2“, the maximal
number of countable models.

Assessment of the completeness of the aims of the work. All the results are
new and are based on our own methods and tools. Conditions guaranteeing maximality
of the number of countable models were obtained, as well as a subclass of dependent
theories satisfying the Vaught conjecture was found. Therefore, the work objectives
were completed.

Suggestions on applications of the obtained results. The results obtained in
this area of model theory can be used during the study of countable models of countable
small theories and during a search of a proof for the VVaught conjecture. For example,
the conditions obtained for maximality of the number of countable models imply that
a theory which has w; countable models should not satisfy those conditions. Results
obtained on the nature of countable nonisomorphic models of small theories can be
applied theories of algebraic structures.

Assessment of scientific level of the work in comparison with the
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achievements in the scientific direction. The results obtained in comparison with the
best achievements of foreign colleagues do not lose and contribute to the study of
countable spectrum of small theories.

74



REFERENCES

1 Marker D. Model Theory: An Introduction. — New York: Springer-Verlag, 2002.
— 342 p.

2 Hodges W. Model Theory. — Cambridge: Cambridge University Press, 2002. —
772 p.

3 Tent T., Ziegler M. A course in Model Theory. — Cambridge: Cambridge
University Press and ASL, 2012. — 248 p.

4 Chang C.C., Keisler H.J. Model Theory — Studies in Logic and the Foundations
of Mathematics. — Elsevier, 1990. — Vol. 73. — 649 p.

5 Morley M.D. The number of countable models // Journal of Symbolic Logic. —
1970. — Vol. 35. — P. 14-18.

6 Vaught R. Denumerable models of complete theories // Infinistic Methods. —
London: Pergamon. — 1961. — P. 303-321.

7 Baldwin J.T., Lachlan A.H. On strongly minimal sets // Journal of Symbolic
Logic. — 1971. — Vol. 36. — p. 79-96.

8 Shelah S., Harrington L., Makkai M. A proof of Vaught’s conjecture for w-
stable theories // Israel Journal of Mathematics. — 1984. — Vol. 49. — P. 259-280.

9 Marker D. Omitting types in o-minimal theories // The Journal of Symbolic
Logic. — 1986. — Vol. 51. — P. 63-74.

10 Mayer L. Vaught’s conjecture for o-minimal theories // Journal of Symbolic
Logic. —1988. — Vol. 53, Ne 1. — P. 146-159.

11 Sudoplatov S.V., Kulpeshov B.Sh. Vaught’s conjecture for quite o-minimal
theories // Annals of Pure and Applied Logic. —2017. — Vol. 168, Ne 1. — P. 129-149.

12 Baizhanov B., Baizhanov S., Saulebayeva T., Zambarnaya T. One-formulas
and one-types in ordered theories / Marematuueckuii xxyprai. — 2016. — T. 16, Ne 2
(60). — C. 104-125.

13 Baizhanov B.S., Baizhanov S.S., Sailaubay N.E., Umbetbayev O.A.,
Zambarnaya T.S. Essential and inessential expansions: model completeness and
number of countable models // Marematuueckuii )xypHai. — 2017. — T. 17, Ne 2 (64).
—C. 43-52.

14 Alibek A., Baizhanov B., Baldwin J., Yershegeshova A., Zambarnaya T.
Diagrams and small theories // Book of Abstracts, 15th Congress of Logic,
Methodology and Philosophy of Science, Logic Colloquium 2015. University of
Helsinki, Finland, 2015. — P. 753.

15 Zambarnaya T.S. Non-homogenous countable models and finite diagrams //
Te3ucel JOKIANOB MEXIyHApOAHOW Hay4yHOU KoHpepeHimu ‘“Teopust GyHKIHIA,
uHpopmaTtuka, nuddepeHIanbHbIe ypaBHEHUS U UX IprioxeHus”. — Anmatsl, 2015.
—C. 170.

16 Baizhanov B., Umbetbayev O., Zambarnaya T. Small theories with a definable
linear order // Te3uce! 10KIa10B MEXAyHAPOAHON HAaydyHOM KOoH(pepeHiuu “Anredpa,
aHanus, nuddepeHmanbpable ypaBHEHU U UX npuiioxkenus’”. — Anmartsel, 2016. — C.
51-52.

17 Baizhanov B., Umbetbayev O., Zambarnaya T. The properties of linear orders

75



defined on the classes of convex equivalence of 1-formulas // Book of Abstracts, Logic
Colloquium 2016. University of Leeds, 2016. — P. 58-59.

18 Zambarnaya T. On type-n-preserving formulas // Tesucel mokiamnos
€XKEroJIHOM HayyHOW ampesibcKOM KOH(MEpPEeHIIMHM HWHCTUTYTa MaTEeMaTUKd W
MATEMAaTHYCCKOT'O MOJACIINPOBAHUA, HOCBHHIGHHOﬁ JHIO HAYKH U HAYYHOI'O CCMHHApa
“IludepeHimanbable  ONepaTopbl W MOJCIMPOBAHHE  CIIOKHBIX  CHCTEM,
nocssieHHoro /0-netHeMy roOuiero mpodeccopa Mysamapxana TanabaeBuya
JlxenanueBa. — Anmmarel, 2017. — C. 29-30.

19 Kobdikbayeva F.E., Zambarnaya T.S. Countable models and order property //
Te3ucel NOKIANOB €XKEroJHOW HAay4YHOH ampeinbCKod KOH(GEpPEeHIIMH HHCTUTYTa
MAaTCMAaTUKU H MATCMATHUYCCKOI0O MOACIMPOBAHMUA, HOCB)IH.[éHHOﬁ JAHIO HAYKH H
Hay4yHOro ceMmuHapa “‘/luddepeHimanbabie onepaTtopbl U MOJACIUPOBAHUE CIIOKHBIX
cucrem”’, mocBsmieHHoro /0-metHemy 1o0miero mpodeccopa MyBamapxaHa
Tanabaepuya JIxenanmuena. — Anmatsl, 2017. — C. 30-31.

20 Baizhanov B., Umbetbayev O., Zambarnaya T. The properties of linear orders
defined on the classes of convex equivalence of 1-formulas // The Bulletin of Symbolic
Logic. —2017. — Vol. 23, Ne 2, — P. 231-232.

21 Baizhanov B., Zambarnaya T. Some properties of formulas and types of small
ordered theories with few countable models // Te3uchl q0KIaI0B MEKIYHAPOIHOM
KoH(pepeHu “AxTyanbHble TPOOJEMBI YUCTOM M MPHUKIATHOM MaTEMaTHUKH,
nocBsiteHHou 100-eturo co quA poxkaeHus akagemuka TaitmanoBa A.Jl. — AnMarsl,
2017. — C. 56-59.

22 Kobdikbayeva F., Zambarnaya T. Countable models and strictly order property
// Te3uckl JOKIa10B MEXIYHAPOIHON KOH(epeHInHU “AKTyallbHbIE POOJIEMbI YUCTOM
Y TIPUKJIAJHON MaTeMaTUKN , TOCBAIIEHHON 100-1eTrio Co THS pOXKIACHUS aKaJeMHUKa
TatimanoBa Acana JlabcoBuua. — Anamartsl, 2017. — C. 71.

23 Baizhanov B., Zambarnaya T. On countable models of ordered theories //
Te3ucbl  OKIAAOB  TPAAUIMOHHOM  MEXIYHApOAHOM HAYYHOM  alpesbCKOU
koH(pepennuu B yects JlHs paboTHUKOB Hayku PecnyOnuku Kazaxcran. — AnmMarsl,
2018. - C. 9.

24 Los J. On the categoricity in power of elementary deductive systems and some
related problems // Collogquium Mathematicum. — 1954. — Vol. 3, Ne 1. — P. 58-62.

25 Morley M.D. Categoricity in power // Translations of the American
Mathematical Society. — 1965. — Vol. 114. — P. 514-538.

26 Baldwin J.T. a; isfinite for X,-categorical T // Transactions of the American
Mathematical Society. —1973. — Vol. 181. — P. 37-51.

27 3unbbep b.M. O panre TpancueHAEHTHOCTH GopMyn N, -KaTerOpUYHOMN
teopuu // Marematnueckue 3ametku. — 1974, — T. 15, Ne 2, — C. 321-329.

28 Mustafin T.G., Taimanov A.D. Countable models of-categorical but not-
categorical theories-categorical theories // Anreopa u nmoruka. — 1970. — Vol. 9 Ne 5. —
P. 338-341.

29 Shelah S. Stability, the f.c.p., and superstability; model theoretic properties of
formulas in first order theory // Annals of Mathematical Logic. — 1971. — Vol. 3. — P,
271-362.

76



30 Shelah S. Uniqueness and characterization of prime models over sets for totally
transcendental first order theory // Journal of Symbolic Logic. —1972. Vol. 37, Nel. P,
107-113.

31 Shelah S. Categoricity of uncountable theories // Proc. Of Tarski’s Symp.,
Symp. Pure Math. Congress of Math. — Vancouver, 1974. — P. 187-204.

32 Shelah S. Why there are many non-isomorphic models for an unsuperstable
theory // Proceedings of the International Congress. — VVancouver, 1974. — P. 259-263.

33 Shelah S. Classification theory and the number of non-isomorphic models.
Amsterdam: North-Holland. — 1978. — Vol. 92. — 544 p.

34 Lachlan A. Dimension and totally transcendental theories of rank 2 // Lect.
Notes Math. — 1976. — Vol. 537. — P. 153-183.

35 bainkanoB b.C. ToTanbHO TpPaHCUEHACHTHBIE TEOPUU PAHTA 2, WMEIOILINE
pa3mepHOCTh // Pemennem peakomierueil « CHOMPCKOro MaTeMaTH4ECKOr0 KypHaJ1a
ot 21.03.1980 nenonuporano B BUHUTU, Ne 3893-80/1, ot 26.08.1980. — C. 1-24.

36 Lachlan A. Spectra of w-stable theories // Z. math. Logik Grundl. Math. —
1978. — Vol. 24. — P. 129-1309.

37 bainkanos b.C. HexkoTopble CBOMCTBa TOTAJIbHO TPAHCIIEHAEHTHBIX TEOpUi. B
kH.: Teopust moaeneit u e€ mpunoxkenus. — Anmva-Ata: KaszI'y, 1980. — C. 14-24,

38 IMamotun E.A. CTpykTypa U CIEKTp MOJEIIEN MOJHBIX Teopui, CripaBoyHas
KHHTa TI0 MateMaTuaeckoi joruke. Yacts |, Teopus Moxenei, mepeBoa ¢ aHri. / moa
pen. 10.JI. EpmoBa, A.Jl. TalimanoBa. — M.: Hayxka, 1982. — C. 320-387.

39 baitxkanoB b.C. CriekTpanbHble BOIPOCH TOTANBHO TPAHCLEHICHTHBIX TEOPUI
KOHeuHoro panra. B kH.: Teopust mozenei u e€ npuioxenus. — Anma-Ara: Kazl'y,
1980. — C. 25-44.

40 Shelah S. The spectrum problem I1I: universal theories // Israel Journal of
Mathematics. 1986. — VVol. 55. — P. 229-256.

41 Hart B., Hrushovski E., Laskowski M.S. The uncountable spectra of countable
theories // Ann Math. — 2000. — Vol. 152, Ne 1. — P. 207-257.

42 Lachlan A. On the number of countable models of a countable superstable
theory // Proc. Int. Conf. Logic, Methodology and Philosophy of Sciences. Amsterdam:
North-Holland. — 1973. — P. 45-56.

43 Mycrapun T.I'. O yucie cueTHbIX MoOjeNied CUETHOW NOJHON Teopuu //
Aunre6pa u noruka. — 1981. — T. 20, Ne 1. — C. 69-91.

44 CynomnnatoB C.B. IIpobnema Jlaxmana. — HoBocubupck: HI'TY, 2009. — 336
C.

45 Shelah S. Classification theory and the number of non-isomorphic models //
Studies in Logic and the Foundations of Mathematics. — 1978. — Vol. 92. — 544 p.

46 Pillay A. Number of countable models // Journal of Symbolic Logic. — 1978.
—Vol. 43, No 3. — P. 492-496.

47 Benda M. Remarks on countable models // Fund. Math. — 1974. — P. 107-1109.

48 Popkov R.A., Sudoplatov S.V. Distributions of countable models of theories
with continuum many types // arXiv. — 2012. — 1210.4043v1. — 30 p.

49 Casanovas E. The number of countable models // Model Theory Seminar.
University of Barcelona, 2002. — 24 p.

77



50 Baizhanov B.S. and Omarov B. On finite diagrams // Teopust perynsipHbIX
KPUBBIX B PA3JIMYHBIX TEOMETPUUECKUX MTpocTpaHcTBax. — 1979, — P. 11-15.

51 CynomnaroB C.B. Knaccudukarus cUETHBIX MOEIEH IMOTHBIX TEOPHM. —
HoBocubupck: HI'TY, — 2014. — 356 c.

52 Baizhanov B.S., Sudoplatov S.V., Verbovskiy V.V. Conditions for non-
symmetric relations of semi-isolation // Siberian electronic mathematical reports. —
2012. — Volume 9. — P. 161-184.

53 Rubin M. Theories of linear order // Israel Journal of Mathematics. — Vol. 17.
—1974. P. 392-443.

54 Shelah S. End extensions and numbers of countable models // Journal of
Symbolic Logic. — 1978. — Vol. 43. — P. 550-562.

55 Peretiatkin M. On theories with three countable models // Anre6pa u Jloruxka.
—1980. — Vol. 19, Ne 2. — P. 224-236.

56 Omarov B. Non-essential expansions of complete theories // Anrebpa u
Jloruka. — 1983. — Vol. 22, Ne 5. — P. 542-550.

57 Alibek A. and Baizhanov B.S. Examples of countable models of weakly o-
minimal theory // International Journal of Mathematics and Physics. — 2012. — Vol. 3,
Ne 2. —P. 1-8.

58 Forking and Dividing. Map of the Universe.
http://www.forkinganddividing.com/

59 Simon P. A Guide to NIP Theories. — Cambridge: Cambridge University Press,
2015. - 173 p.

60 Pillay A. and Steinhorn Ch. Definable sets in ordered structures. 1. //
Translations of American Mathematical Society — 1986. — P. 565-592.

61 Ackerman N.L. Lecture Notes on Vaught’s Conjecture at Logic Seminar //
Harvard, 2007. — 37 p.

62 Baizhanov B.S., Tazabekova N.S., Yershigeshova A.D., Zambarnaya T.S.
Types in small theories / Maremarudeckuii xypuan. — 2015, — T. 15, Ne 1 (55). — C.
38-56.

63 Baizhanov B., Baldwin J.T., Zambarnaya T. Finding 2% countable models for
ordered theories // Cubupckue 31eKTpoHHBIE MaTeMaTHueckue n3pectus. — 2018, — T,
15. - C. 719-727.

64 Baizhanov B.S., Kulpeshov B.Sh. On behaviour of 2-formulas in weakly o-
minimal theories // Proceedings of the 9th Asian Logic Conference “Mathematical
Logic in Asia”. — Singapore, 2006. — P. 31-40.

65 Alibek A.A., Baizhanov B.S., Zambarnaya T.S. Discrete order on a definable
set and the number of models // Matematuueckuii xxypHan. — 2014. T. 14, Ne 3 (53).
C. 5-13.

66 Baizhanov B.S. Classification of one-types in weakly o-minimal theories and
its corollaries // Preprint. — 1996. — 33 p.

67 Baizhanov B.S. Expansion of a model of a weakly o-minimal theory by a
family of unary predicates // Journal of Symbolic Logic. — 2001. — VVol. 66. — P. 1382-
1414,

68 Baizhanov B.S., Hodges W. Countable ordered models with small theories //

/8



Preprint. — 2001. — 22 p.

69 Baizhanov B., Kobdikbayeva F., Zambarnaya T. On the number of countable
models of complete theories with a partial order // Matemarnueckuii sxypuain. — 2017.
—T. 17, Ne 4 (66). — C. 5-12.

70 Macpherson H.D., Marker D., Steinhorn C., Weakly o-minimal structures and
real closed fields // Transactions of The American Mathematical Society. — 2000. Vol.
352. P. 5435-5483.

71 Baizhanov B.S. Expansion of a model of a weakly o-minimal theory by a
family of unary predicates // Journal of Symbolic Logic. — 2001. — Vol. 66 — P. 1382-
1414,

72 Kulpeshov B.Sh. Convexity rank and orthogonality in weakly o-minimal
theories // News of the National Academy of Sciences of the Republic of Kazakhstan,
physical and mathematical series. — 2003. Vol. 227. — P. 26-31.

73 Kulpeshov B.Sh. Weakly o-minimal structures and some of their properties //
Journal of Symbolic Logic. — 1998. — Vol. 63. — P. 1511-1528.

74 Alibek A., Baizhanov B.S., Kulpeshov B.Sh., Zambarnaya T.S. Vaught’s
conjecture for weakly o-minimal theories of convexity rank 1 // Annals of Pure and
Applied Logic. — 2018. — Vol. 169, Ne 11. — P. 1190-12009.

75 Baizhanov B.S., One-types in weakly o-minimal theories // Proceedings of
Informatics and Control Problems Institute, Almaty. — 1996. — P. 75-88.

76 Baizhanov B.S., Kulpeshov B.Sh. On behaviour of 2-formulas in weakly o-
minimal theories // Proceedings of the 9th Asian Logic Conference “Mathematical
Logic in Asia”. — Singapore 2006. — P. 31-40.

77 Kulpeshov B.Sh. Binary types in X,-categorical weakly o-minimal theories //
Mathematical Logic Quarterly. — 2011. — Vol. 57. P. 246-255.

78 Kulpeshov B.Sh. Countably categorical quite o-minimal theories // Journal of
Mathematical Sciences. — 2013. — Vol. 188, Ne 4. P. 387-397.

79 Kulpeshov B.Sh. Criterion for binarity of X,-categorical weakly o-minimal
theories // Annals of Pure and Applied Logic. — 2007. — Vol. 45. — P. 354-367.

79



